Leveraging Performance of Multiroot Data Center Networks by Reactive Reroute Mitigate congestion by combining spatial and spectral solutions

Adrian Sai-wah Tam Kang Xi H. Jonathan Chao

Department of Electrical and Computer Engineering Polytechnic Institute of New York University

Hot Interconnects 2010

Congestion in Data Center Networks: Why congested?

Flows competing for bandwidth

Flows overflowing a host

Solution

Flows competing for bandwidth

Change flows' route (spatial)

Flows overflowing a host

Change flows' bandwidth (spectral)

Reactive reroute as a solution to congestion control

- When congested, network switch notifies sender
- Sender throttles a flow to mitigate congestion
- Edge switch redirects a flow to mitigate congestion

Reactive reroute as a solution to congestion control

- When congested, network switch notifies sender
- Sender throttles a flow to mitigate congestion
- **6** Edge switch redirects a flow to mitigate congestion

Reactive

Provided by IEEE Data Center Bridging Standards

Reroute

New switch function

Reactive

IEEE Data Center Bridging Standards

- IEEE 802.1Qbb: Priority Flow Control
- IEEE 802.1Qau: Congestion Notification

IEEE 802.1Qau

- Link-level Congestion Control
- L2 send rate of a flow reactive to congestion
- RP: Reactive Point, i.e. NIC in hosts
- CP: Congestion Point, i.e. queues in switches
- QCN: Quantified Congestion Notification, created by CP and received by RP
- Goal: Maintain usage at Q_{eq}

IEEE 802.1Qbb

- Link-level Flow Control
- Similar to stop-and-go
- PAUSE to upstream to prevent overflow

QCN: Quantified Congestion Notification

CP: Congestion Point (output buffer)

RP: Reaction Point (host NIC)

Reroute

Fat-tree Topology

- Fat-tree has a lot of redundant paths from any host to another
- Can we exploit the multipath to mitigate congestion?

General Topology

(topology source: Rocketfuel)

- Irregular, mesh-like topologies
- Also a lot of redundant paths
- Can we exploit the multipath to mitigate congestion?

DCN with Multipath Routing

- Assume IEEE 802.1Qau/bb support
- Multipath routing for flows at all switch

DCN with Multipath Routing

- Assume IEEE 802.1Qau/bb support → Spectral
- Multipath routing for flows at all switch → Spatial

Routing in Fat-tree

- Edge: Hash-based, Flow-based, Destination-based routing
- Aggr & Core: Hash-based, Destination-based routing
- "Downward": Always destination-based "Upward": Hash-based and optionally flow-based

Routing in Fat-tree

- By default, hash-based routing unless destination is known
- Destination is known only for "downward" routing
- Hash the flow (e.g. 5-tuple) into output ports to randomize the next hop

Reaction to QCN

- Output port randomizing ≠ Load balancing (∵ Uneven flow size)
- Congestion may occur: IEEE 802.1Qau in action
- Edge switches are unique to hosts, ∴ must see the QCNs

 Implement flow-based routing on edge switches to reroute upon congestion

Edge Switch Forwarding Algorithm

```
procedure route(Packet P)
   if route for P is found in destination-based routing table then
       \nu \leftarrow output port according to dest-based table
   else if route for P is found in flow-based routing table then
       \nu \leftarrow output port according to flow-based table
       update last encounter time of this flow in flow-based table
   else
       \nu \leftarrow \mathsf{Hash}(P)
   end if
   if P is a congestion notification then
       if P is found in congestion signal record then
           increase the count in the record
       else
           create a new entry in the record with count=1
       end if
       if count in congestion signal record \geq threshold then
           reset the count
           reroute the flow by updating flow-based table
       end if
   end if
   Send P to output port \nu
end procedure
```


Edge Switch Forwarding Algorithm

- Upon congestion, edge switch receives QCNs
- When enough number of QCN is received for some flow, it is worth to reroute because it is big enough to have some impact

Edge Switch Forwarding Algorithm

- Upon congestion, edge switch receives QCNs
- When enough number of QCN is received for some flow, it is worth to reroute because it is big enough to have some impact
- Flow table to remember the reroute
- Erase the flow entry after some time of inactivity

Reroute

Different ways of reroute

- Degenerated case: Do not reroute
- Uniform random output port selection
- Select the output port of minimum likelihood of congestion
- Weight random output port selection (combine of above two)

Reroute

Different ways of reroute

- Degenerated case: Do not reroute
- Uniform random output port selection
- Select the output port of minimum likelihood of congestion
- Weight random output port selection (combine of above two)

Likelihood is estimated by an edge switch based on the QCNs it received

More on rerouting

- Because of rerouting, packets out-of-order is expected, but the amont of packets out-of-order is limited because of small buffer and high speed of DCN switches
- Route flapping might happen but controlled by:
 - Threshold of the number of QCNs to reroute a flow
 - Frequency of creating QCNs
 - A route-freeze timer to prevent a flow rerouted twice in a short time

Evaluation

Framework

- NS-3 simulation
- Random sending rate, Random sender-receiver, Admissible traffic
- Load = the agg. sending rate as link speed %
- Fat-tree: 10-port switches with 1Gbps links

Framework

- NS-3 simulation
- Random sending rate, Random sender-receiver, Admissible traffic
- Load = the agg. sending rate as link speed %
- Fat-tree: 10-port switches with 1Gbps links

Goal

How much improvement does reactive reroute provide?

Throughput

Figure: Average throughput per link of edge switch sending to host at (left) 70% load and (right) 90% load, UDP traffic

Latency

Figure: Mean link layer latency vs load

Queue length

Figure: Buffer occupancy under 70% load

Conclusion

Reroute vs Performance

- Reactive reroute significantly improves performance
- Different reroute strategies are evaluated. Amongst, uniform and weighted random give best performance

End

How about irregular networks?

- Find multiple distict spanning trees
- Send packets on different tree → different routes
- Implemented using IEEE 802.1Q VLAN

Edge Switch in Irregular Networks

- Every switch is an edge switch to the directly-attached hosts
- Edge switch
 - prepend VLAN header to packets sent by their hosts
 - 2 capture QCNs toward their host
 - reroute flows orginated from their hosts by changing the VLAN ID

Topologies

Network E Small scale, low node degree

Topologies

Network T Many degree-1 nodes

Topologies

Network L Large network with high node degree

Throughput

Figure: Average throughput per link of edge switch sending to host at 70% load

Queue length

Figure: Buffer occupancy of a switch vs time, under 70% load

Topology

- Regular topology gives better performance, because it is less likely to have bottlenecks
- Node degree is not a factor to performance, as long as multipath exists (i.e. not degree-1 nodes) for most routes
 - Network E has average node degree of 4 only

Reactive Reroute Solution

- Level-2 solution
- Exploit the high speed, low latency nature of DCN
- Solve the congestion problem in **two** dimensions: *spatial* and *spectral*