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Pure Math – Limits
Absolute Values

Absolute value: 
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Properties of absolute values:
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Limit of a Function

Left Hand Limit: A function f has L as left hand limit at a iff ((0)((0) s.t.
(axa+ ( | f(x)–L|)
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Right Hand Limit: A function f has L as right hand limit at a iff ((0)((0) s.t.
(a–xa ( | f(x)–L|
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Limit: A function f has L as limit at a iff ((0)((0) s.t. (x–a | ( | f(x) – L|  
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( If  f(x) = g(x) in some deleted neighborhood of a and 
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( If 
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 then f(x) is bdd on some del’d nhd of a
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( If f(x)g(x)h(x) in some del’d nhd of a and 
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( If g(x) is bdd in some del’d nhd of a and 
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Limit at Infinity: A function f has L as limit at infinity iff (0, (0 s.t. (xr ( | f(x) – L|  
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Limit Algebra:
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Continuity of a Function

Continuous:
( A function f is continuous at a point a iff (0, (0 s.t. x–a | ( | f(x) – f(a)|  

( f is cts iff 
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( A function f is cts on (a, b) iff f is cts at point x (x ( (a, b)
( A function f is cts on [a, b] iff f is cts at point x (x ( (a, b)
 (
[image: image33.wmf])

(

)

(

lim

a

f

x

f

a

x

=

+

®

 ( 
[image: image34.wmf])

(

)

(

lim

b

f

x

f

b

x

=

-

®


Discontinuous:
( A function f is discontinuous at a point a iff it is not continuous at a

( A function f is discontinuous on a range iff f is not continuous on that range

Discontinuity:

· Jump: A function f,
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· Replaceable discontinuity: A function f,
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· Essential discontinuity: A function f,
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� The three are known as triangle inequalities


� The sandwich principle of squeeze theorem


� Corollary of the sandwich principle
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