MetaPost Tutorial

Study group material prepared by Adrian
21st January 2005

1 Background

e Developed by John Hobby in AT&T Bell Labs, base on Donald Knuth’s Metafont language
e Web site: http://cm.bell-labs.com/who/hobby/MetaPost.html

e Papers and documentations:

— John D. HobbyA METAFONT-like System with PostScript Outputgboat, the gX User’s Group Newsletter, 10(4),
1989.

— John D. Hobby, A User’s manual for MetaPostAT&T Bell Laboratories Computing Science Technical Report
162, 1992. (just 87 pages)

— John D. Hobby|ntroduction to MetaPostProceedings of EurgK '92, 1992.

— John D. HobbyDPrawing Graphs with MetaPosAT&T Bell Laboratories Computing Science Technical Report 164,
1992.

2 Concept
e Build in feature of mostAIEX packages
e Two-dimensional Cartesian coordinate systéxny)
e Way of use:

1. Write a plain text file describing the picture (e.g. picture.mp)

2. Compile to give output in encapsulated postscript format
$ mpost picture.mp

3. Rename the picutre
$ mv picture.l picutre.eps

4. Include it in BTpX such as:
\usepackage{graphicx}
\includegraphics[width=1.0\columnwidth,keepaspectratio] {picture.eps}

¢ If you want MetaPost inside théTieX source, you can try “EMP” or encapsulated MetaPost

3 Basics
e Begin each figure witbbeginfig(n) and end each figure wittndfig
— nis the figure number. Where each output EPS figure will be storédlasame . n

e You can have multiple figures in a file

e End the whole file with the line end

e Example:

beginfig(101);

draw fullcircle scaled 2cm;

endfig;

beginfig(102);

draw fullcircle scaled 2cm xscaled 1.5;
endfig;

end

e Metapost draws on a canva and it knows gKTinits

— Centimeter (cm), Millimeter (mm), Points (pt), Picas (pc), Inches (in), ...
— Maximum size it can handlet4096ptx +4096pt (aroundt5 feetx +5 feet)

e Data types

— numeric,e.g.1,1.5,2

— pair (coordinates), e.g. (-10,10)

— path (lines and curves)

— transform, e.g. scaling, rotating, shifting

— string, double quoted

— boolean, construct bytrue, false, and, or, not, =, <>, <, <=, >, >=

— color, picture, pen

e Declare your data type before use, or MetaPost will guess what it is (maybe wrong)

¢ Usually coordinates are representecasvheren can be any number, e.g0, z1, z2
— Once declaredsn andyn correspond to itg-coordinate ang-coordinate immediately!

e Operators

— Calculations:+, -, *, /, ** (exponential)- (negative)++ (va2+b?), +-+ (va2 — b?)
— String concatenation'abc" & "def"

— Substring:substring (0,1) of "abcdef"

— Square rootsqrt (2/3)

— Mediation:0.5[6,7] equals tes.5,0.5[(0,0),(4,4)] equals to(2,2)

— Xly coordinatexpart (0,0), ypart (0,0)

4 Drawing lines and curves

e Lines:--, Curve:..

e Example:

beginfig(101); 3,4)
draw (0,0)--(3cm,0)..(3cm,4cm)..cycle;

dotlabel.bot (" (0,00",(0,0));

dotlabel.bot("(3,0)", (3cm,0));

dotlabel.top("(3,4)", (3cm,4cm));

endfig;

end 00) (30)

e Another example: Directions of curves

beginfig(102); (3)
draw (0,0)--(3cm,0){dir 100}..(3cm,4cm){dir -100}..cycle;
dotlabel.bot("(0,0)",(0,0));

dotlabel.bot("(3,0)",(3cm,0));

dotlabel.top("(3,4)", (3cm,4cm));

endfig;

end

(0,0) (3,0)

e A bit ugly at (3,4). So more mandatory directions added:

(3,4)

beginfig(103);
draw (0,0)--(3cm,0){dir 100}..{dir 135}(3cm,4cm){dir -100}..cycle;
dotlabel.bot("(0,0)",(0,0));
dotlabel.bot("(3,0)",(3cm,0));
dotlabel.top("(3,4)", (3cm,4cm));
endfig;
end

(0,0) (3,0)

e Actually, repeating “cm” is so inconvenent, so we do this:

numeric u; (374)
u:=1cm;
beginfig(103);
draw (0,0)--(3u,0){dir 100}..{dir 135} (3u,4u){dir -100}..cycle;
dotlabel.bot("(0,0)",(0,0));
dotlabel.bot ("(3,0)", (3u,0));
dotlabel.top("(3,4)",(3u,4u));
endfig;
o (0,0) (3,0)

e Points to note:

1. We can control how curve the line is, or MetaPost will make the decision for us

. Direction of curves are expressed in degrees, and +ve degree means clockwise

3. At “emitted” end of curve, O degree is at the Hwaxis;

At “incident” end of curve, 0 degree is at the -xaxis.

. We declared variables and use it (not necessary, but avoids problems)
. Assignment of values to variablesir : =value
. For convenience, MetaPost defined

— left =dir 180
right =dir 0

— up =dir 90
— down =dir -90

. cycle means to close the loop

8. We usediotlabel to draw labels with a dot at some coordinate. The label text is placed at the bokain top

(top), left (1ft), right (rt), upper left (1ft), upper right {rt), lower left (11ft), or lower right (rt). Labels
without placement is centered at the coordinate. Labels without dot can be createtlaisihgvith similar syntax.

5 Plotting graphs

e MetaPost supports loops

Example 1:
draw (0,0).. for i=1 step 1 until 5: ..(i,i**2); endfor;

Example 2:

draw (0,0).. for i=1 upto 5: ..(i,i**2); endfor;
Example 3:

draw (0,0).. for i=1,2,3,4,5: ..(i,i**2); endfor;

Example 4:
forever: exitunless i>=5; draw (i,i**2)..(i+1,(i+1)**2); i++; endfor

e Example:

beginfig(104);

path pict[];

pictl:=(-3u,9u) for i=-3 step 1 until 3: .. (i*u,i**2%u) endfor;
pict2:=(-3u,9u) for i=-3 upto 3: ..(i*u,i**2*u) endfor; 4
pict3:=(-3u,9u) for i=-3,-2,-1,0,1,2,3: ..(i*u,i**2%u) endfor;

i:=3; 3
pict4:=(3u,9%u);

forever: 9

pictéd:=picté.. (i*xu,i**2%u);
i:=i-1; exitif i<O0;

—

pict5:=(-3u,9u);

forever:
pictb:=picth.. (i*u,i**2%u);
i:=i+1; exitif i>0;

endfor;

pict4:=picth..reverse pict4;

for i=1 upto 4:
draw pict[i] shifted (lcm,i*cm);
dotlabel.top(char (ASCII("0")+1i),(-3u,9u) shifted (lcm,ix*cm));

endfor;

endfig;

e We used loops to calculate the coordinate of different points, and make a smooth curve to join them

e Something to note:

1. forever loop need complete statements, hence we cannot use it to build a curve like examples 1-3
2. we demonstrated how to use arrays in MetaPost

3. we demonstrated how to use path variable to store a path. The way to call an element of an arrayiean,be

pict.1,0orpict[1].

4. we used the functiofeverse to reverse a path, as in
pict4:=pictbh..reverse pictd

5. we usediSCII("0") to get the ASCII humber of character “0” and ussithr () to get a character by the ASCII

number
6. we usedshifted (x,y) to move the whole picture left coordinates and up coordinates

e Actually, we are not limited to shifted, we can have: (better to collect them intaasform variable)

(x,y) shifted (a,b) =
(X,y) slanted a
(X,y) scaled a =

(Xx+a,y+b)
(
(
y) xscaled a = (axy)
(
(
(

X+ ay,y)

(X,
(X,y) yscaled b = (xby)
(X,y) zscaled (a,b) = (ax—bybx+ay)
(X,y) rotated 8 = (xcod —ysinO,xsinb +ycosh)
(X,y) reflectedabout (p,q) = reflection
(X,y) rotatedaround (p,q) = rotation

¢ If you want dots instead of solid lines, you can have it in this way (se@sformed is used as well):

beginfig(105); ,
path pict; \ !
transform T; ! !
T:=identity shifted (3,9) scaled u; | !

pict:=(-3,9) for i=-3 step 1 until 3: ..(i,i**2) endfor; \
draw pict transformed T dashed withdots; \
draw pict transformed T shifted (0,1lcm) dashed evenly; N
endfor;

endfig;

6 Circles and squares

e Full circle and half circles

beginfig(106); //“\\

transform circle,ellipse,semi,rotsemi;

circle:=identity scaled u;

ellipse:=identity shifted (2,0) scaled u yscaled 2;

semi:=identity shifted (0,2) scaled u;

rotsemi:=identity rotated 90 shifted (0,-2) scaled u; (:::)
draw fullcircle transformed circle;

draw fullcircle transformed ellipse;

draw halfcircle transformed semi;

draw halfcircle transformed rotsemi; <::
endfig;

e Please remember ivtate before youshifted or scaled!
e Sorry, we don't have squares or rectangles. Please write your own.

beginfig(107);
path square; 7% square with side length 1 pt
square:=(-0.5,-0.5)--(-0.5,0.5)--(0.5,0.5)--(0.5,-0.5)--cycle;
draw square scaled 2u; Area—
draw square scaled 2u xscaled 2 shifted (2u,-2u);
draw square scaled 2u xscaled 2 slanted -0.3 shifted (-3u,-2u); \\ h \\

2= A

N

label(btex Area=$\ell~2$ etex, (0,0));

label(btex $A=\ell w$ etex, (2u,-2u));

label(btex $\displaystyle \ell h \over 2% etex, (-3u,-2u));
endfig;

e Inthe above, we've shown

. If you want plain text, you can just use a string (double quoted)
. If you want something complicated, ugeXTand place them betweénex andetex

1
2
3. In TeX, no display equation is supported, if you want the fractions prettier\dsgplaystyle
4. Save some figures, e gquare, and then you can use it many times

5

. Sometimes, if you just want a square enclosing some text, use this method:
picture text;
text:=thelabel ("’Hi’’, (1cm,1cm));
draw text;
draw bbox text;
wherethelabel is same as label without actually drawing it astsbx is a function to get the enclosing rectange of
a picture

— To box everything drawn, tr§raw bbox currentpicture

e How about arcs? Let's see

beginfig(108);

path circle, line[];

circle := fullcircle scaled 4u;

linel := (0,0)--(1,0) rotated 30 scaled 2.5u;
line2 := (0,0)--(1,0) rotated 90 scaled 2.5u;
draw circle; draw linel; draw line2;
dotlabel.bot("origin", (0,0)); origin
dotlabel.rt(btex p_1 etex, linel intersectionpoint circle);
dotlabel.ulft(btex $p_2% etex, line2 intersectiomnpoint circle);

endfig;

P2

e We can actually uséntersectionpoint to find the intersections! So we can use this cubuitd an arc

beginfig(109);
path circle, line[];

circle := fullcircle scaled 4u;
linel := (0,0)--(1,0) rotated 30 scaled 3u;
line2 := (0,0)--(1,0) rotated 90 scaled 3u; P2

pair arc[];

arcl = circle intersectiontimes linel;

arc2 = circle intersectiontimes line2;

draw subpath(xpart arcl,xpart arc2) of circle; 1
draw subpath(ypart arcl,length linel) of linel;

draw subpath(ypart arc2,length line2) of line2;
dotlabel.bot ("origin", (0,0));

dotlabel.rt(btex p_1 etex, point xpart arcl of circle);
dotlabel.ulft(btex p_2% etex, point ypart arc2 of line2);
endfig;

-. .
origin

e Points to note:
1. intersectiontimes gives the “time” pair, where first and second value correspond to first and second path respec-
tively
. time can be regarded as the parameter of the position along a path
. length of a path is the time at its endpoint. Starting point’s time is always 0.
. subpath(a,b) of path gives the partial curve from positianto positionb

a b~ WODN

. If no intersection can be fountihtersectiontimes gives (-1,-1)

e Actually, we can use similar technigue to draw equilaterial triangles:

beginfig(110);

path p[l;

p1=(0,0)--(1,0);

p2=((0,0)--(1,0)) rotated 60;
p3=((0,0)--(1,0)) rotated 120 shifted (3cm,0);
pair qll;

qll=point 0 of pi;

ql2=point length pl of pil;

g21=point 0 of p2;

q22=point length p2 of p2;

g31=point 0 of p3;

g32=point length p3 of p3;
ql=whatever[qll,ql2]=whatever[q21,q22];
gq2=whatever[q21,q22]=whatever[q31,q32]; ¢ »
gq3=whatever[q31,932]=whatever[qll,ql2]; ql q3
draw gql--q2--q3--cycle;

dotlabel.11ft("ql",ql);

dotlabel.top("q2",q2);

dotlabel.lrt("q3",q3);

endfig;

e Definitely, it is not to most compact way to draw a equilaterial triangle. But you can see how great MetaPost is!

— gql=whatever[qll,ql2]=whatever[q21,q22]

means to defingq1 as the point of intersection betwegni--q12 andq21--q22
— The easiest way to draw a equilaterial triangle is

path p[], triangle;

pl:=(0,0)--(1,0);

p2:=pl rotate 60;

p3:=pl rotate 120 shift (1,0);

draw pl--p2--p3--cycle;

7 What's more?

e Actually there are much more features in MetaPost

e Example: Filling and unfilling

beginfig(111);

path p;

p:=(-1,0)..(0,-1)..(1,0);

£i1l (p{up}..{down}(0,0){down}..{up}cycle) scaled 1lcm;

draw (p..(0,1)..cycle) scaled 1cm;

picture yin,yang;

yin:=thelabel("Yin", (0.5cm,-0.5cm)); .
o " "o) Yin

yang:=thelabel("Yang", (-0.5cm,0.5¢cm));

unfill bbox yin; draw yin;

unfill bbox yang; draw yang;

endfig;

Yang

e Example: Building from intersections

beginfig(112);

path pll;

pl:=halfcircle scaled 3cm;

p2:=halfcircle rotated 180 scaled 3cm shifted (0,1cm);

p3:=halfcircle rotated 90 scaled 3cm shifted (lcm,lcm);
p4:=buildcycle(pl,p2,p3) shifted (-0.5cm,3cm);

p5:=buildcycle(p3,p2,pl) shifted (0.5cm,3cm); L7
draw pl dashed evenly; R S~

draw
draw
draw
draw

p2 dashed evenly;
p3 dashed evenly;
p4;
PS;

endfig; ~--
e Example: Arrows
beginfig(113);

path p; ‘_//////—\\\
p:=(-1cm,0){dir -45}..(0,0){dir 45}..(1cm,0);

drawarrow p;

drawarrow reverse p shifted (0,0.5cm);
drawdblarrow p shifted (0,-0.5cm);
endfig;

e Clipping. grouping. macros, coloring, pen style, self-defined dash style

8 Why learning MetaPost?

e |learn it because | want to draw a Markov Chain in my paper

e Don't be lazy! If you picture is really complicated, write a program to help you generate all these drawing commands (Perl
can do a good job!)

