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1 Overview of Differential Calculus
e A continuoudunction f(x) has independent variale

— Differentiation of f (x) with respect tocis denoted byL ;():()

— Differential of f(x) is an approximation of the change fiix): d f(x) ~ f(x+ 0x) — f(x)

— Differentials can be related by the derivativkf (x) = %(Xx)dx

e A continuous multi-variable functiofi(xi, X2, ..., %) has independent variablgg X, . .., Xn

— Differentiation of f(-) with respect to is denoted by;%f
k

n
— Differential of f(-) is expressed as a sumhf = %dxk
k=1

— Think: The term%dxk is the change irf due todx, amount of change in a single variale

¢ Inverse of differentiation is integration

dx=A(x,t)dt

2 Introduction to SDE

2.1 SDE with respect to a Wiener process [4, 7]

e A standard Wiener process/Brownian motidi

1 2
— Infinitesimal incrementslW in time dt has density:——— e~ 9%/2dt
v/ 2rdt

— Mean ofdW: dW = E{dW} =0
— Variance ofdW = E { (dW — dW)?} = E {(dW)?} = (dW)?
* But according to the density function, the variancdtishence

(dW)2 =dt
— A function of Wiener processt (t,W) has the differential

df(t,W) = f(t+dt, W +dW) — f(t,W)

1)

)
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e Taylor's expansion: [5]

Xla X Z{ I [ Xk_ak)dii/(‘| ()(117’)(;1)}
j =1 X)=ay

(x,y) f(xy)
X OX+ dy
y

%1 (x,y %1 (x,y
)(5x)2+2 a(dy)5x6y+ 05/2 )(6y)2]

of
f(x+0x,y+ dy) = f(x,y)+{ 5y]

1 [9%f(x,
el 0 :

dfxy ne

[

k=0
— Hence tyhe Taylor's expansion of (2):

df(t,W) = —f(t, W) + f(t+dt, W +dW)
of(t, W) af(t, W)
—f(t, W) + f(t, W)+ ot dt+ W dw
192F(t, W) .., 0%f(t,W™) 10%f(t,W™)
2 o W e W 0e
_of(ew) o df(t,W) 10%f(t W) o
= dt+ W W+ 5 — (dt)®+
* Substituting (1), the mean behavioraf(t,W) is therefore:
af(t,W) W 10%f(tW) o 9*F(t,W) 192 (t, W)
TR T 2 o T G dWH S 50e
_ of(t,W) W 10%F(t, M) ., 0°F(t,WM) 19%F(t, W)
= a0 Y Tow 2 o T Gaw B H0e
_9f(tW) 19%f(t, W)
=~ ot dt+ W +§ 0\/\42
_[ofew) | 10%f (t,w>]dt+0f<t,vw>
ot 2 OW2 oW

(dW)*+

r?zf(t,vwdtd\,\{+ 19%f(t,WM)

Atow 2 w2 (aW)*+

(@W)2 4+

df(t,W) =

dt+

dt

dW asdt — 0

e Chainrule:

— Letdx(t,WM) = a(x,t)dt+ b(x,t)dW

— For f (x(t,\M)),

afew)) = a1 4 2y

[OX(t, W)  19%x(t,W™) ox(t,W)
ot T2 aw? ]dt W
[/axt W) 192x(t, W)\ df(X) AX(t, W)\ ? d2f (x) ox(t,W) df(x)
( a2 aw? > dx +2( oW ) dled” owax 9w

dt+b(xt) 5

2
df] dde

dx(t, W) = dw

df(x(t,W)) =

— This is called the one-dimensional Itd’s formula, named after Kiyoshiff@#E)

e Traditional product rule:

d(f(t)g(t)) = f(t+dt)g(t+dt) — f(t)g(t)

[f(t-+dt) — f(t)] gt +dt) + f () [g(t +dt) —g(t)]

[ (t+dt) — f ()] [g(t +dt) —g(t)] + [F(t+dt) — ()] g(t) + F(t) [9(t + dt) —g(t)]
df(t)dg(t) +g(t)df(t) + ()dg(t)

_ df® dgt) 42 FO) dg(t)
G g (07 g abdt+ == f ()t
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— If dtis infinitesimal,(dt)? = 0 and we get

attvem) = TV gat+ 9 g 1)

e Productrulein It

d(f(t,W)g(t, W)

f(t+dt, W +dW)g(t +dt, W + dW) — f(t,W)g(t, W)
[F(t -+ dlt, W -+ dWW) — (£, W)] g(t + dt, W -+ dWW) + (£, W) [g(t + dt, Wk + dW) — g(t, W)
[£ (t -+ dlt, W+ V) — F(t, W] [g(t -+ dit, W+ dW) — g(t, W)

+ [ (t+ At W+ W) — (W] gt W) + F (8, W) [g(t + dt, W+ dW) — g(t, W)
— dF(t,W)dg(t, W) + g(t, W) F(E, W) + (. W) dg(t, W)

2 2

(M LD PRI TP IR X AN PR

< 1029(t,\/\4)>dt+0g(t,v\4) dg  19%g

2w ow o= *zmz>dt+mdw

d(t, K 102f>dt+0fdw] [<09+1529)dt+dw]
g

2 OW2 oW 2 OW? oW
af 1 9%f dg 1d%
" K 26V\42> de} [( +2<M2)d”awdw}
10%f\ [(dg 1 9% , 0f (dg 1%
= (G aoe) (5 2one) @0+ g (5 2o ) 1w
2
<af+ 0f)dgdtdw of dg

202 + i awg (AW°

af 1 92%f of dg 1 d%g
#9] (5 * 2w ) e 1[5 2w 9t owe

9t g, ., af 1921 af ag 1 9%

_of ag af 162f dg 1 d%g af  adg
awawd”[( +2Mz)9+( *zw)f}d‘*{mg*m}dw

which yields the following Itd’s product rule:

d(f(t,W)g(t,WM)) =
af(t, W) | 19%f(t,W) ag(t, W)  19%g(t, W) af(t, W) dg(t,Wm)

K ot 2w )g(I’W)‘L( a2 owg )me W oW }dt

n {5;(3\2\4) 595\/7\2\4)

ot W) + f(t,vw} aw

e Rationale:
dx=a(x,t)dt+ b(x,t)dW
(1) (0)+/t ( t)dt+/tb( t)dW
X(t) =X a(x, X,
0 0

The first equation is the stochastic differential equation. 1td’s solution is to find a functiprthat satisfy the
second equation. Which we call it the solution of the first one.

2.2 SDE with respect to a Poisson counting process [1]

e Poisson Counter Driven Stochastic differential equations is of the form:
n

dX(t) = F(X(©)dt+ Y Gi(X(t)dN(t)
i=1

where{X(t)} is a stochastic process described by the stochastic differential equstibnare Poisson counters
that drivesX(t), andf (x), gi(x) are real-valued functions
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— Ifitis driven by Wiener procesd; (t) becomed\ (t)

— Poisson process is in discrete domain, Ngt) € N; but Wiener process is in continuous dom#it) € R
This causes the PCDSDE differ from the previous section

e Poisson countdx;(t) with dN(t) = 0if no eventi occur att anddN(t) = 1if eventioccur att, i.e.

1 atPoisson arrival
dN = { 0 elsewhere ©)
E[dN] = Adt

e Properties of stochastic differential equations
1. cadlag: continue a droite, limite & gaucheN([t) jumps atr
lim X(t) =X(17)
t—1—
X(1) =X(17)+9(X(17))

2. If h(t) = h(X(t)) is a function of a stochastic process, then due to the jump nature:

dh(t) = SQ ( dt+Zg. )

dh
= ! dt+z N(t)
= S dt+2 £)+6 (X(1) =h(X ()] dN (1) (4)

3. Let); be the rate associated with(t), then

dEIX ()] = d”ZE @ (XAt
or dEZi(m ~ EIF (X)) + Y AElg (X(0)] v

3 Examples
3.1 M/G/1 Queue [1,2]

Imagine a M/G/1 queue with server capacity of 1

Arrival is represented by Poisson counting procg¥&)} with arrival rateA, general service time per customer is
X

LetW(t) be the amount of work in the system (which can also be the queueing time of the customer artiying at
then

_dt4+XdNE) W(t) >
dw(t) :{ XdN(t) W(t) =

= —1(W(t) > 0)dt+ XdN(t)

0
0

By (5), we have
% — —E[L(W(1) > 0)] + AE[X]

— —PW(t) > 0]+ AE[X]

If the system is ergodic and stabbz,é AE[X] < 1anddE[W(t)]/dt =0, hence
dEW()]
dt
—PrW(t) > 0]+ AE[X] =0
Priw(t) >0 = AE[X] =p

=0
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e Similarly, the differential for the second momentwf{t):

AW2(t) = oo (—LW(E) > 0)dt+ [(W(D) +X)2 —W2(1)] dN(t)
= —2W(t)L(W(t) > 0)dt+ [W2(t) +2XW(t) + XZ —W2(t)] dN(t)
= —2W(t)L(W(t) > 0)dt+ [2XW(t) + X?] dN(t)

dE[\(/jv:(t)} — “2EW()LW(t) > 0)] + A (2EW(1)X] +E[X?))
= —2E\W(t)] +A (2E[W(t)|E[X] + E[X?¥))
— —2E(W(t)] +2pE[W(1)] + AE[X?]
(

e In steady statej E[W?(t)]/dt = 0 which yields the Pollaczek-Khinchin formula

0= 2EW()](p— 1)+ AE[X?]
2(1- P)EW(D)] = AE[X?
_ AEN?

EW(O)] = EMG = 5o~

3.2 Window size in TCP and determining the rate [6]

e The paper describes the TCP traffic model by Poisson couNtergtriple duplicate ACKs) and\to (timeout)

e Window sizeW is described by the differential equation:

dt W

e Taking expectation on (6) will have:

elaw) = 2~ EWgianro) 1 (1 EW)EfdN

dEW] = % — %)\TDdtﬁ- (1—E[W])ATodt

dEW] 1 EW
dt RTT 2

1 A
=———+Ato— (ATo-i- TD) E(W]

ATD"‘ (1— E[W])ATO

RTT 2
since
Y (t) =a+byt)
= y)=—p+C

therefore

1 1

E[W]Wmexp( (/\To+ ATD)t) ICeR
Ato+ 5P 2
1
=7+ A
- ﬁ)\m ast — oo (steady state)
Ato+ R

e The throughtpuR is the expected window size divided by the RTT, hence

R 1 (&As+M0
T RTT \ Ao+ 22

which we can determine the data rate of TCP by giving RTT, timeout rate and triple-ACK rate

e In [6], a further refinement of the window si¥€ is done

(6)
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— Maximum window size allowed ¥max = K. Hence no more additive increase affér= K
— Equation (6) is therefore rewritten as:

dt w
dw = |M(W)ﬁ—_ EdNTD‘F(l_W)dNTO

where

1 W<M
|M(W):{O WeM

e Similaring doing expectation,

dt  EW]

E[dW] = Elly (W)] o~ — 5 E[dNro] + (1~ EW)E[dNro)
dE[W} = E[|M(W)]% — @)\TDdt—f— (1- E[W})/\Todt
dEd[:N} = PAW < M}% - @ATM (1— EW))Aro
0=PHW < M]%—H\To— (ATo+ AT2D> E[W]
~ PW < Mgt +At0
B = AT0+2T/\TTD
(1P = M) e +Aro
Ato+ 3ATD

e Please read the paper for the rest, the final result is:

PIW = M] = 2025+ 2A10+ AToATD + 2AToRTT + 25 + 2RTT
(Rf-}—-l—-i-l)(ZMATo-l- M/\TD+2R7%—T)

3.3 Adrian’s Unpublished Research Work
e A pipe of capacity 1 with two types of traffic: TCP and UDP

e Each TCP user arrives in Poisson process with at;nd UDP user arrives with rafe,

e TCP user has file size in exponential distribution with m&agn,; UDP user requires a fixed bandwidth< 1 but
it stay in the network for an exponential time with melghy,

o UDP user will refuse to enter the network if the network is full, i.e. if the networkrh&€P andm UDP, and the
following satisfied
ne+(m+1la>1

then the UDP user will not enter the network

0 ne+(m+1la>1
1 ne+(m+la<1

e Admission function is defined astn,m) = {

e LetW(t) be the total number of bytes to be transferred by the network atttime

e PCDSDE:
dW(t) = —L(W > 0)dt + SAN -+ I (n,m)S,dN,

— § and§, are random variables describing the data size (number of bytes) of a newly arriving TCP and UDP
user, respectively

— N; andNy are Poisson counters decribing the arrival of TCP and UDP users

— The expected value dfn,m) denotes the ratio of admitted UDP users to the total UDP arrivals
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e Taking the mean:

dW(t) = —1(W > 0)dt+ SdN + I (n,m)S,dN,
dEW] = —E[1(W > 0)]dt + E[SAN] + E[I (n,m)S,dN]
= —PrW > 0]dt+ E[S]E[dN] + E[I (n,m)]|E[S,|E[dN,]

= —PrW > 0]dt+ ui)\tdtjL Prne+ (m+21)a > 1]§Audt
t u

dEW] =—PW > 0] 4—ﬁ +Prne+ (m+L)a > 1]0(ﬂ
dt Ut Hu

But if the system is in steady state, the mean workBMi] should be independent of the timéenced E[\W] /dt =
0 is expected, so we get

Hu

A A
0= —PrW > (] +Et +Prne + (m+1)a > La—

Au At
Pr{ns+(m+1)a>1]auu PrW > }—E
PrW > 0] — p @

Prine+ (m+1)a > 1] = ap
u

with ot = A/ andpy = Ay/ . The termPrW > 0] is the percentage of busy time of the pipe, which can be
approximated byriW > 0] ~ min(1,apy+ o).

e The second moment d¥(t):
dW(t) = —1(W > 0)dt + SdN + I (n,m)S,dN,
AW (0) = D 3w > 0) e [(Wio) +8)7 - WD) N+ WO+ nmS 2R e (@
= —2W(t)L(W > 0)dt + [W2(t) + 2SW(t) + F —WA(t)] dN + [WA(t) + 21 (n, m)SW(t) + 12 (n,m) S — W2(t) ] dN
= —2W(t)L(W > 0)dt+ [2SW(t) + ] dN ++ [21 (n,m)SW(t) + 1 (n,m) ] dN,
GEWT  _2E W)+ & (2E(SW] + EIS) + Ell(nm)JAu (2E[SW) + EIS)
= —2E\W] + A (2E[S]EW] +E[S]]) +E[l (n,m)] Ay (2E[SEW] + E[S])

— _2EW] + A (Z:'tE[W] n E[§]) FE[ (n,m)]Ay <ZSUE[W] + E[sﬁ]) )

— Second moment of exponential variable:

E[X?] = / X2Ae M XdX
0

— _/ d —AX
0
. [xze—“r+/ 2Xe M dX
0 0

-2 (7 “AX
==/ X
)\ /0 de

_ 7AX e X

= Xe )\ / dX
2 [ 1 AX]

=— e
ALA 0
2

Az

— Hence substitute into (9) and setting the derivative to be zero, we have

0= —2EW| + A (2;5\/\/] + :2) +E[I(n,m)]Ay (ZSUE[W] + 2:;)

Ra®py
Hy

EW] = AEW]+ 7+ ElL (0. m)]apuE W] +
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2
(1-p—Ell(nm)apEWw] = 2 ¢ El(ma%p
H Hu
p , Ell(nm)]a®py
T T

~1-p—Efl(nm)ap,

E[W]

after substitutinde [l (n,m)] as in (7), it becomes

MW = 1=y El(nman,

2 _ _
:<p[+a pu PW > Q] Q)/(l_p[_Pr[W>O] ptapu>
TS apy apy

_ (P a(PiW>0-p) o

— (24 2EMEAEA)) [ piw 0+ p)
_ PrHy+aPriW > 0] — a B

= o /(1 PW > 0])

~ PtHu+aPriW > 0] —ak
C Heku(1-PYW > 0))

e Because the pipe has capacity 1, using Little’s formula, the mean population of TCP traffic is:

nN=AxT
:/\tptouraPr[W > 0] —ak
ity (1—PrW > 0])
_ ppu+ o PAW > 0] — a A
© pu(1-PW >0))
_ prut+ap —ak
T p(1-p)

e S0, what's next?!

3.4 Fluid Queue [3]
¢ A fluid queue with serving capacityand a buffer siz& feed by markov on-off source
e When the source is in “on” state, fluid arrives with rate c¢; no arrival in “off” state

e There is a threshold such that, when the fluid in queue exce&dwhile the source just turns to “on” state, the
whole arrival is discarded

— Rationale: An IP packet (usually >1 kbyte) is divided into multiple 53-byte cells in ATM. One single ATM
cell drop will cause the whole IP packet unrecoverable. If we model IP packet arrival as markov on-off source
and the fluid queue as ATM link, this behavior is optimal to use the bandwidth

e The source is in silence period for an exponentially distributed time with nig¢am; the burst size is also
exponentially distributed with medly A,

e Let 6 € {0,1} denotes the behavior of the source arel{0,1} denotes the arrival pattern with discarding policy,
i.e. if x= 0 =1, the fluid queue is accepting fluid arrival with rdteif x = 8 = 0, the queue is clearing and no
arrial to the queue; ik = 0 while 8 = 1, the arrival is discarded due to the buffer level exceddeat the timef
turns from O to 1.

e The process of buffer levelt) and arrival pattern(t) are denoted by
dx(t) = [1—x(t)] L(v(t) < K)dNp — x(t)dNx
dv(t) = —cl(v(t) > 0)dt+ hx(t)1(v(t) < B)dt+ cx(t)1(v(t) = B)dt

whereN; is a Poisson counter with rafg (signals the end of silence period) aNglis a Poisson counter with rate
A2 (signals the end of bursty arrival)

— The first term ofdx(t) means arrival of a burst is accepted only(if) < K andx(t) =0
The second term means the termination of a burst will ca(tge¢o change only ik(t) = 1
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— The first term ofdv(t) means that if the queue is not empty, the buffer is cleared at the rate of
The second term meansft) = 1, the queue will be filled with the rate dfunlessv(t) > B, which buffer
overflow will occur
The third term means, if buffer overflow occur, ax(d) = 1, v(t) will keep atB

e The differential of thgn+ 1)-th power ofv(t), using equation (4):
dv' = (n+ 1)v'dv
= (n+1)V"[—cl(v > 0)dt+hxl(v < B)dt+cxl(v = B)dt]
dV'x = nxV"~Ldv+vdx
=nxV""1[—c1(v> 0)dt + hxl(v < B)dt+ cxi(v = B)d{]
+V'[(1—x)1(v < K)dN; — xdN]

and taking the expectation:

dENVY) = (n+1) (—~cE[V"1(v > 0)]dt + hEV"X1(v < B)]dt + cE[V"x1(v = B)]dt)
= (n+1) (—cEV"|dt + hE[V"X|v < B] Priv < B]dt + cE[V"X|v = B](1— Prjv < B])dt)
= (n+1) (hEV"x|v < B] Prlv < B]dt — cE[V"x|v < B] Priv < B]dt)

dEVX] = n(—cEN""x1(v > 0)] + hEM1%?1(v < B)] + cE[V* '%?1(v = B)]) dt
+EM'(1—x)1(v < K)]A1dt — E[V"X]A2dt
=n(—cEV "X + hEN"x)v < B] Prv < B] + cE[V"~ *x|v = B|(1— Priv = B])) dt

+ENM(1-x)1(v < K)]Ardt — E[V"X]Adt

— Notes:

1. X2 = x because € {0,1}

. EV™X™1(v > 0)] = E[V"X™)]

. v(t) is upperbounded bB. HencePrv < B] = 1— Prjv = B] 21

. EVXM = EVX"|v < B]p2 + E[V'X"|v=B|(1— p2)

. We definePrjv < K] 2 p1 < p2
. If v=B, xmust be 1. Henc&[V"'x"|v = B] = E[\"|v = B] = B"

o o1~ WDN

e Therefore we can rewrite the differentd[v"x] into:
dE[VX] = n(—cE[N""X +hENV" x|V < B]p, + CE[V" *X|v = B](1— pp)) dt

+EM(1—x)|v < KA1 p1dt — E[V"X] A2dt

=n(—cEM X +h(EV1X — EN"Xjv=B](1— p2)) + CE" *x|v=B](1- py)) dt
+EM(1—-x)|v < KAy p1dt — E[V"X]Aodt

=n((h—c)ENMx + (h—c)EV" x|v=B](1- py)) dt
+EM(1—x)|v < K]A1p1dt — E[V"X] A2dt

=n((h—c)EM"x|v < B]p,) dt
+EMV" —V'X)|v < K]App1dt — E[V"X]Aodt

=n((h—c)EM"x|v < B]p,) dt
+EM"\v < KA1 p1dt — E[V'X|v < K]A1 prdt — E[V'X|v < B]p2A2dt — E[V"X|v = B](1 — p2)A2dt

=n((h—c)EM"x|v < B]p,) dt
+EM"\v < K]A1p1dt — E[V'X|v < K]A1 prdt — E[V'X|v < B]p2A2dt — B"(1— py)Axdt

e Substitute the following:

ENV'|v< B]pz = E[V'|v< K]p1 + EM'|K < v < BJ(p2— p1)
EV'X|v < B]p2 = E[V'X|v < K]p1 + E[V'X|K < v < B](p2— p1)

into the differentialgl E[v"x] andd E[v"*1] will get:

dENV') = (n+1) (hE[V"X|v < B] Prlv < BJdt — cE[V"x|v < B] Prlv < BJdt)
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= (n+1) (hEV"'X|v < B|p2dt — cE[V"'X|v < B] p2dt)
= (n+1) (hENV'X|]v < K]p1 + hE[V'X|K < v < B](p2 — p1) — CE[V"|v < K]p1 — cE[V"|K < v < B](p2 — p1)) dt
dEMV'X] = n((h—c)E[V" x|v < B]py) dt
+EM"\v < KA1 p1dt — E[V'X|v < K]A1 p1dt — E[V'X|v < B]p2A2dt — B"(1— p2)Axdt
=n((h—c)ENMx|v < K]py + (h— )EV" XK < v < B](p2— p1)) dt
+ E[Vn|V < KJA1p1dt — E[VnX|V < K]A1p1dt
—ENVXv < K]p1A2dt — E[V"X|K < v < BJ(p2 — p1)A2dt — B"(1— pz)A2dt.

e So setting the two differentials to zero (as the steady behavior, the expectation is independent)piémet:

0=hEVX|v < K]p1 +hE[V"X|K <V < BJ(p2 — p1) — cE[V"|v < K]p1 — cE[V"|K < v < B](p2 — p1)
0=n(h—c)p1EV" v < K] +n(h—c)(p2— p1)EM XK < v < B
+EM'|\v< KJA1p1 — E[VX]v < K]A1p1
—ENVX|v < K]p1A2 — E[VX|K < v < B](p2 — p1)A2 — B"(1— p2)A2
=n(h—c)EV" X —n(h—c)EV" Ix|Jv=B](1— p2) — B"(1— p2)A2
—ENVX|v< K]p1(A1+A2) —E[V'XIK < v < B|(p2— p1)A2+ EV'|V < K]A1p1

or in matrix form:

EVX|v < K]
( hpy h(p2—p1) —cpr —c(p2— pl)) EVXK < v < B
—p1(A1+A2) —A2Ap2—p1) A1 0 E[M'v<K]
EMV'K <v < B

+ (n(h—c)E[v”lx] - n(hgc)anl_ B"(1— pz)/\> = (8) '

¢ EliminatingE[v"x|v < K] from the above yields:

S EMv<K] =
C()\thrAz) (n(h—c)E[V" %] —B"(1— p2) (n(h—¢)B~* +A2) + (p2 — p1)ME[V'XK < v < BJ)

1
—(p2— pEMIK <v< B]] <p1c(j\\i:)_1t]\2))

e In [3], it can finally derive a formula foE[V"] and then by using

[ee]

e} el =gy C -3 E gy
n=0 ’ n=0 ’

to derive the Laplace transform of the buffer size distribution, which can be used to find the probability distribution
and other useful things.
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