

### A Study of the Coexistence of Heterogeneous Flows in Data Network

Adrian Sai-wah Tam

swtam3@ie.cuhk.edu.hk

Department of Information Engineering

The Chinese University of Hong Kong

A Study of the Coexistence of Heterogeneous Flows in Data Network - p. 1

## **Data Network** Telephone network: Circuit switching At any instant of time, the circuit is used by only one user, with bandwidth guarantee Computer network: Packet switching At any instant of time, data network is shared by a number of users, but no guarantee on bandwidth



#### Dichotomy: Elastic vs Inelastic

- Elastic traffic can adapt to network conditions
  - It still functions if the network is slow, low bandwidth, high delay, ...
- Inelastic traffic cannot adapt
  - If bandwidth/delay is below the desired level, it is nearly useless

| Traffic: Examples                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Traditional TCP applications are elastic:<br/>HTTP, FTP, etc.</li> <li>Multimedia application are generally inelastic</li> <li>e.g. VoIP, streaming, etc.</li> </ul> |

A Study of the Coexistence of Heterogeneous Flows in Data Network - p. 4

### **Problem Statement**

# How should the elastic and inelastic traffic coexist in data networks?



bandwidth allocation?

### **Existing Solution: No control**

- Use UDP for multimedia use
- Use RTP on top of UDP to keep track of the packet arrival time
- Problem: fairness with elastic traffic is not guaranteed

### **Proposal 1: TCP Friendly**

- IETF is working on this problem
- The current solution requires inelastic traffic to adapt
- Inelastic flows need to be fair when they use the network

# **Proposal 2: Admission Control**

- Similar to circuit switching approach
- Multimedia stay inelastic
- Before you use, make sure the network can support you!
- Frank Kelly, Laurent Massoulié, Peter Key, Alan Bain, James Roberts, Thomas Bonald, Gunnar Karlsson, ...

### Which one is the best?

#### My research topic

 Compare different traffic controls based on modeling and analysis

### **Different** approaches

#### Evaluation 1: Utility based

#### Evaluation 2: Stochastic Differential Equations



Credit: Scott Shenker (invited paper in 1995)

Utility

#### • Elastic: $U(x) = \log(x)$

- Following Frank Kelly (proportional fairness, paper in 1997)
- A concave function
- Inelastic:  $U(x) = \sin^k(x)$ 
  - Steep decay in utility if the allocation is lower than desired rate
  - Over-allocating yields no advantage
  - This is known as a sigmoidal function

Utility

$$U_E(x) = \log(1+x); \quad U_I(x) = \begin{cases} \sin^{50}(\frac{\pi}{2}\frac{x}{\alpha}) & \text{if } 0 \le x \le \alpha\\ 1 & \text{if } x > \alpha \end{cases}$$



A Study of the Coexistence of Heterogeneous Flows in Data Network - p. 14

### **Model for Evaluation**

Approximation by fluid model

- Network conditions are sensed by the traffic instantly and the controls take effect immediately
- Single bottleneck link network





A Study of the Coexistence of Heterogeneous Flows in Data Network – p. 16

### **Traffic Controls for Inelastic**

- 1. No Control multimedia over UDP
- 2. Congestion Control TCP-friendly
- 3. Admission control in an aggressive way
- 4. Admission control in a conservative way

### **NC: No Control**

Each inelastic flow uses  $\alpha$  of bandwidth

 $\hfill \hfill \hfill$ 

|           | No. | Each                  | Total         |
|-----------|-----|-----------------------|---------------|
| Inelastic | m   | $\alpha$              | m lpha        |
| Elastic   | n   | $\frac{1-m\alpha}{n}$ | $1 - m\alpha$ |
| Total     |     |                       | 1             |

If  $m\alpha > 1$ , elastic traffic get nothing and each inelastic flow has  $\alpha/m$ 

### **CC: Fair Share Congestion Control**

 $\hfill \hfill \hfill$ 

|           | No. | Each            | Total           |
|-----------|-----|-----------------|-----------------|
| Inelastic | m   | $\frac{1}{m+n}$ | $\frac{m}{m+n}$ |
| Elastic   | n   | $\frac{1}{m+n}$ | $\frac{n}{m+n}$ |
| Total     |     |                 | 1               |

If  $\frac{1}{m+n} > \alpha$ , each inelastic flow will use only  $\alpha$ . Then each elastic flow will have

$$\frac{1-m\alpha}{n} > \frac{1}{m+n}$$

#### **AC-A: Aggressive Admission Ctrl** • Assume an inelastic flow always take $\alpha$ of bandwidth • Guarantee each elastic flow gets $\epsilon$ or more when admitting inelastic flows No. Each Total Inelastic m $\alpha$ $m \alpha$ $1-m\alpha$ Elastic n $1-m\alpha$ Total • Admission only if $n\epsilon + (m+1)\alpha \leq 1$

• Typically  $0 < \epsilon \ll \alpha$ 

### **AC-C: Conservative Admission Ctrl**

#### $\bullet = \alpha$

- Admission only if  $(n+m+1)\alpha \leq 1$
- We call this the "TCP-friendly admission control"

### **Markov Chain: NC**



### **Markov Chain: CC**



### **Markov Chain: AC-A**



### **Markov Chain: AC-C**



### **Markov Chain: Summary**

|      |                                 | $(n,m) \rightarrow$ | $(n,m) \rightarrow$ | $(n,m) \rightarrow$ | $(n,m) \rightarrow$           |
|------|---------------------------------|---------------------|---------------------|---------------------|-------------------------------|
|      |                                 | (n, m + 1)          | (n+1,m)             | (n, m - 1)          | (n - 1, m)                    |
| NC   | $m\alpha \leq 1$                | $\lambda_i$         | $\lambda_e$         | $m\mu_i$            | $(1-m\alpha)\mu_e$            |
|      | $m\alpha > 1$                   | $\lambda_i$         | $\lambda_e$         | $m\mu_i$            | 0                             |
| CC   | $(n+m)\alpha \le 1$             | $\lambda_i$         | $\lambda_e$         | $m\mu_i$            | $(1-m\alpha)\mu_e$            |
|      | $(n+m)\alpha > 1$               | $\lambda_i$         | $\lambda_e$         | $m\mu_i$            | $\frac{n}{n+m}\mu_e$          |
| AC-A | $n\epsilon + (m+1)\alpha \le 1$ | $\lambda_i$         | $\lambda_e$         | $m\mu_i$            | $(1-m\alpha)\mu_e$            |
|      | $n\epsilon + (m+1)\alpha > 1$   | 0                   | $\lambda_e$         | $m\mu_i$            | $\max(0, (1 - m\alpha)\mu_e)$ |
| AC-C | $(n+m+1)\alpha \le 1$           | $\lambda_i$         | $\lambda_e$         | $m\mu_i$            | $(1-m\alpha)\mu_e$            |
|      | $(n+m+1)\alpha > 1$             | 0                   | $\lambda_e$         | $m\mu_i$            | $\max(0, (1 - m\alpha)\mu_e)$ |



A Study of the Coexistence of Heterogeneous Flows in Data Network - p. 27

### **Different approaches**

#### Evaluation 1: Utility based

#### Evaluation 2: Stochastic Differential Equations





# **Evaluation 2: Blocking Probability** $d\tau = -\mathbf{1}(\tau > 0)dt + S_e dN_e + I(n,m)S_i dN_i$ $dE[\tau] = E[-\mathbf{1}(\tau > 0)]dt + E[S_e dN_e + I(n, m)S_i dN_i]$ $= -\Pr[\tau > 0]dt$ $+ E[S_e]E[dN_e] + \Pr[I(n,m) = 1]E[S_i]E[dN_i]$ $\frac{dE[\tau]}{dt} = -\Pr[\tau > 0]dt + \rho_e + \Pr[I(n,m) = 1]\alpha\rho_i$

### **Evaluation 2: Blocking Probability**

Setting 
$$\frac{dE[\tau]}{dt} = 0$$
,  

$$\Pr[I(n,m) = 1] = \frac{\Pr[\tau > 0] - \rho_e}{\alpha \rho_i}$$

this is the admission probability, i.e.  $1 - P_{block}$ 

**Evaluation 2: Blocking Probability**  
$$1 - P_{block} = \frac{\Pr[\tau > 0] - \rho_e}{\alpha \rho_i}$$
  
•  $\Pr[\tau > 0]$  is the probability that the network is not idle  
• Intuitively, we can approximate by:  
$$\Pr[\tau > 0] \approx \min(\rho, 1)$$
$$\rho = \rho_e + \alpha \rho_i$$
$$\therefore \quad 1 - P_{block} \approx \frac{\min(\rho, 1) - \rho_e}{\alpha \rho_i}$$

### Selfish is not good

$$1 - P_{\text{block}} \approx \frac{\min(\rho, 1) - \rho_e}{\alpha \rho_i}$$

- We do not have  $\epsilon$  in the equation!
- Whichever AC models we use, the resulting  $P_{\text{block}}$  is the same
  - Being aggressive and selfish does not improve the performance
  - In terms of social welfare, AC-C should be chosen in place of AC-A

### Selfish is not good





| R | References                                                                                                                |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   | Network fairness for heterogeneous<br>applications<br>Dah Ming Chiu and Adrian Tam<br>In Proc. SIGCOMM Asia Workshop 2005 |  |  |  |
|   | A case for TCP-friendly admission control<br>Adrian Tam, Dah Ming Chiu, John Lui, Y. C. Tay<br>Submitted to INFOCOM 2006  |  |  |  |
|   | Redefining fairness in the study of<br>TCP-friendly traffic controls<br>A journal paper in progress                       |  |  |  |

A Study of the Coexistence of Heterogeneous Flows in Data Network - p. 37