A Study of the Coexistence of Heterogeneous Flows in Data Network

Adrian Sai-wah Tam

swtam3@ie.cuhk.edu.hk

Department of Information Engineering The Chinese University of Hong Kong

Traffic Coexistence

Elastic vs

- No explicit constrain on transfer
- Example: File transfer
- usually delivered by TCP

Inelastic

- With constrains (delay/rate/loss)
- Example: Media streaming
- usually delivered by UDP

What should happen inside the black box?

Different 'regulations' in the black box

We call them control schemes:

- No control
- Congestion control
- Admission control
- Admission control with continuous assurance

Result:

Admission control is no worse than congestion control

Roadmap

Dichotomy of Flows

Elastic flow can adapt to network conditions

- It still functions if the network is slow, low bandwidth, high delay, ...
- Example: HTTP, FTP
- Inelastic flow cannot adapt
 - If bandwidth/delay is below the desired level, it is nearly useless
 - Example: VoIP, streaming

Problem Statement

- Elastic flows are adaptive to the available bandwidth
- Inelastic flows do not react to congestion, with constrain on min. data rate and delay

Problem Statement

- Elastic flows are adaptive to the available bandwidth
- Inelastic flows do not react to congestion, with constrain on min. data rate and delay

How should the elastic and inelastic flows coexist in the Internet?

Solution A: No control

- Use UDP for multimedia transfer
- RTP over UDP to trace packet arrival times
- Problem: fairness with elastic flows is not guaranteed
 Fear of congestion collapse

Solution B: Congestion Control

- IETF is working on TCP-friendly congestion control
- Requires inelastic flows to adapt, but allows them to adapt smoothly
- Inelastic flows *need* to be fair when using the network

Solution C: Admission Control

- Similar to circuit switching: All or nothing
- Multimedia stay inelastic
 - Do not insist equal sharing of bandwidth
- Ensure the network can support before you use

Solution D: Admission Control with Continuous Assurance

- Modified from Admission Control
- Consider inelastic flows:
 - Ensure the network can support before you use
 - When you are using, also make sure you don't make the network too congested

Model for Evaluation

Approximation by fluid model

- Network conditions are sensed by the flows instantly and the controls take effect immediately
- Single bottleneck link network

Markov Chain Model

- Applied with the fluid assumption
- State space: no. of elastic and inelastic flows, (n,m)
- Stochastic arrival, but the service rate depends on the flow controls

Flow Controls for Inelastic

- 1. No Control multimedia over UDP
- 2. Congestion Control TCP-friendly
- 3. Admission control in an "aggressive" way
- 4. Admission control in a "conservative" way
- Admission control w/continue assurance in an "aggressive" way
- 6. Admission control w/continue assurance in a "conservative" way

NC: No Control

Each inelastic flow uses α of bandwidth

 $\hfill \hfill \hfill$

	No.	Each	Total
Inelastic	m	α	mlpha
Elastic	n	$\frac{1-m\alpha}{n}$	$1 - m\alpha$
Total			1

• If $m\alpha > 1$, elastic flows get nothing and each inelastic flow has 1/m

CC: Fair Share Congestion Ctrl

 $\hfill \hfill \hfill$

	No.	Each	Total
Inelastic	m	$\frac{1}{m+n}$	$\frac{m}{m+n}$
Elastic	n	$\frac{1}{m+n}$	$rac{n}{m+n}$
Total			1

• If $\frac{1}{m+n} > \alpha$, each inelastic flow will use only α . Then each elastic flow will have $\frac{1-m\alpha}{n} > \frac{1}{m+n}$

AC-A: Aggressive Admission Ctrl

- Assume an inelastic flow always take α of bandwidth
- Guarantee each elastic flow gets ϵ or more when admitting inelastic flows ($0 < \epsilon \ll \alpha$)

	No.	Each	Total
Inelastic	m	lpha	mlpha
Elastic	n	$rac{1-mlpha}{n}$	$1 - m\alpha$
Total			1

 $\bullet \ \ \mbox{Admission only if } n\epsilon + (m+1)\alpha \leq 1$

AC-C: Conservative Admission Ctrl

- $\epsilon = \alpha$
- Admission only if $(n+m+1)\alpha \leq 1$
- We call this the "TCP-friendly admission control"

AA-A and AA-C: AC with Continuous Assurance

- Extension of AC-A and AC-C
- Also allows the inelastic flows to admit only if $n\epsilon + (m+1)\alpha \leq 1$
- Requires inelastic flows to continuously ensure $n\epsilon + m\alpha \le 1$
 - Assure ϵ to each elastic flows continuously

Markov Chain: NC

Markov Chain: CC

Markov Chain: AC-A

Markov Chain: AC-C

Markov Chain: AA-A

Markov Chain: AA-C

Markov Chain: Summary

Transition rates of Markov Chain:

		(n,m) ightarrow	(n,m) ightarrow (n,m) ightarrow	(n,m) ightarrow	(n,m) ightarrow	(n,m) ightarrow
		(n+1,m)	(n, m + 1)	(n-1,m)	(n, m-1)	(n+1, m-1)
NC	$m \alpha < 1$	$\lambda_{ m e}$	λ_{i}	$(1 - m\alpha)\mu_{\rm e}$	$m\mu_{\mathbf{i}}$	0
	$m lpha \ge 1$	$\lambda_{ ext{e}}$	λ_{i}	0	$m\mu_{\mathbf{i}}$	0
СС	$(n+m)\alpha < 1$	$\lambda_{ ext{e}}$	λ_{i}	$(1 - m\alpha)\mu_{e}$	$m\mu_{\mathbf{i}}$	0
	$(n+m)\alpha \ge 1$	$\lambda_{ m e}$	λ_{i}	$\frac{n}{m+n}\mu_{\rm e}$	$m\mu_{f i}$	0
AC-A	$n\epsilon + (m+1)\alpha \le 1$	$\lambda_{\mathbf{e}}$	λ_{i}	$(1 - mlpha)\mu_{\mathbf{e}}$	$m\mu_{f i}$	0
	$n\epsilon + (m+1)\alpha > 1$	$\lambda_{ ext{e}}$	0	$(1 - m\alpha)\mu_{\rm e}$	$m\mu_{i}$	0
AC-C	$(n+m+1)\alpha \le 1$	$\lambda_{ ext{e}}$	λ_{i}	$(1 - m\alpha)\mu_{ m e}$	$m\mu_{\mathbf{i}}$	0
	$(n+m+1)\alpha > 1$	$\lambda_{ ext{e}}$	0	$(1 - m\alpha)\mu_{\rm e}$	$m\mu_{\mathbf{i}}$	0
AA-A	$n\epsilon + (m+1)\alpha \le 1$	$\lambda_{ ext{e}}$	λ_{i}	$(1 - m\alpha)\mu_{ m e}$	$m\mu_{\mathbf{i}}$	0
	$1 - \alpha < n\epsilon + m\alpha \le 1 - \epsilon$	$\lambda_{ m e}$	0	$(1 - m\alpha)\mu_{e}$	$m\mu_{\mathbf{i}}$	0
	$(n+1)\epsilon + m\alpha > 1$	0	0	$(1 - m\alpha)\mu_{\rm e}$	$m\mu_{\mathbf{i}}$	λ_{e}
AA-C	$(n+m+1)\alpha \le 1$	$\lambda_{ ext{e}}$	λ_{i}	$(1 - m\alpha)\mu_{ m e}$	$m\mu_{\mathbf{i}}$	0
	$(n+m+1)\alpha > 1$	0	0	$(1 - m\alpha)\mu_{\rm e}$	$m\mu_{i}$	$\lambda_{ m e}$

Define: $\rho = \rho_e + \alpha \rho_i; \quad \rho_e = \lambda_e / \mu_e; \quad \rho_i = \lambda_i / \mu_i$

Evaluations

- Stability
- Bandwidth allocation
- Utility throughput
- Blocking probability
- Population

- Network as a server and flows as customers
- Pure elastic flows network: M/M/1-PS queue
- Pure inelastic flows network: M/M/ ∞ -PS queue
- How is their mix?

- Stability of queue: Avg queue length doesn't increase
- Inelastic: Leave whenever playback time expired
 - Never accumulate
- Elastic: Leave only if they finish the file transfer
 - Accumulate if not enough bandwidth

- If the network is too congested,
 - NC: bandwidth to elastic flows can be zero
 - Other: limits the use of bandwidth by inelastic flows
- \bullet Therefore, NC is stable if the offered load $\rho < 1$
- Other is stable if the offered load by elastic flows $\rho_{\rm e} < 1$

A Study of the Coexistence of Heterogeneous Flows in Data Network - p.30

Eval. 2: Bandwidth allocation

Aggregated bandwidth allocation

Eval. 2: Bandwidth allocation

Per-flow bandwidth allocation

- The network is serving many flows
- Each flow has some utility function
- Different controls \Rightarrow Different bw. allocation
- The network's utility = Sum of the flows' utility
- Add up the utility of different flows—the better traffic control should yield higher total utility

- Elastic: $u(x) = \log(x)$
 - Following Frank Kelly (proportional fairness, paper in 1997)
 - A concave function and monotonically increasing

- Elastic: $u(x) = \log(x)$
 - Following Frank Kelly (proportional fairness, paper in 1997)
 - A concave function and monotonically increasing
- Inelastic: $u(x) = \sin^k(x)$
 - Steep decay in utility if the allocation is lower than desired rate
 - Over-allocation yields no value
 - This is known as a sigmoidal function

Utility throughput: Expected aggregated utility gain per unit time

$$\bar{G}_{e} = \sum_{n \neq 0} \sum_{m} na_{e}(n, m)u_{e}\left(a_{e}(n, m)\right) P[n, m]$$
$$\bar{G}_{i} = \sum_{n} \sum_{m \neq 0} mu_{i}\left(a_{i}(n, m)\right) P[n, m]$$

- Simulating the Markov chain
- \bullet Result: AA-C, AC-C > AA-A, AC-A, CC > NC

- Focus: How to tune-up the admission control
- Comparing different admission controls do not need utility functions
- The performance of admission control is determined solely by blocking probability

- Consider only the admission control models
- Make use of Poisson Counter Driven Stochastic Differential Equation
- Defining
 - τ to be the total number of bytes yet to be transferred by all the existing flows, and
 - $N_{\rm i}$, $N_{\rm e}$ to be Poisson counters marking the arrival of inelastic and elastic flows

Equation:

$$d\tau = -\mathbf{1}(\tau > 0)dt + S_{\rm e}dN_{\rm e} + I(n,m)S_{\rm i}dN_{\rm i}$$

evaluates to:

$$R = 1 - P_{\text{block}} = \frac{\Pr[\tau > 0] - \rho_{e}}{\alpha \rho_{i}}$$

$$R = 1 - P_{\text{block}} = \frac{\Pr[\tau > 0] - \rho_{e}}{\alpha \rho_{i}}$$

• $\Pr[\tau > 0]$ is the probability that the network is not idle

Intuitively, we can approximate by:

 $\Pr[\tau > 0] \approx \min(\rho, 1)$ $\rho = \rho_{\rm e} + \alpha \rho_{\rm i}$

$$R = 1 - P_{\text{block}} = \frac{\Pr[\tau > 0] - \rho_{e}}{\alpha \rho_{i}}$$

• $\Pr[\tau > 0]$ is the probability that the network is not idle

Intuitively, we can approximate by:

$$\Pr[\tau > 0] \approx \min(\rho, 1)$$
$$\rho = \rho_{e} + \alpha \rho_{i}$$
$$\therefore \quad R \approx \frac{\min(\rho, 1) - \rho_{e}}{\alpha \rho_{i}}$$

$$R \approx \frac{\min(\rho, 1) - \rho_{\rm e}}{\alpha \rho_{\rm i}}$$

- No ϵ in the equation!
- Whichever AC models, the same R

1

- Avg population = Avg no. of flows using the network
- Higher population \Rightarrow Longer queue, longer delay
- Better control scheme shall give lower population (if the offered load is the same)

- Admission probability: $R \approx \frac{\min(\rho, 1) \rho_e}{\alpha \rho_i}$
- Effective offered load by inelastic flows:

$$\rho_{i,eff.} = R\rho_i = \frac{\min(\rho, 1) - \rho_e}{\alpha} = \bar{m}$$

 \bullet \bar{m} is the mean no. of inelastic flows

Inelastic population:

No different between different AC/AA control schemes NC unstable at $\rho > 1$; CC keeps increasing

Elastic population:

Big difference between different control schemes

Recite:
$$R \approx \frac{\min(\rho, 1) - \rho_{e}}{\alpha \rho_{i}}$$

- Being aggressive and selfish does not improve the performance
- In terms of social welfare, AC-C or AA-C should be chosen instead of AC-A or AA-A
 - pseudo-Nash equilibrium

Conclusion

 We argue for multimedia flows it is better to use admission control than TCP-friendly congestion control

Conclusion

- We argue for multimedia flows it is better to use admission control than TCP-friendly congestion control
- To make admission control TCP-friendly is easy:
 - Work as if you are normal TCP first
 - If (attained the rate you want) continue with your desired rate otherwise quit

Conclusion

 It does not pay to be too aggressive! You won't get any advantage in the long run

References

- Network fairness for heterogeneous applications
 Dah Ming Chiu and Adrian Tam
 In Proc. SIGCOMM Asia Workshop 2005
- A case for TCP-friendly admission control
 Adrian Tam, Dah Ming Chiu, John Lui, Y. C. Tay
 Submitted to Networking 2006
- Redefining fairness in the study of TCP-friendly traffic controls

Dah Ming Chiu and Adrian Tam Submitted to IEEE Trans. on Networking

