
.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

.

......

Scalability	and	Resilience	in	Data	Center
Networks: Dynamic	Flow	Reroute	as	an	Example

A use	case	of	devolved	controllers

Adrian	S.-W.	Tam Kang	Xi H.	Jonathan	Chao

Department	of	Electrical	&	Computer	Engineering
Polytechnic	Institute	of	New	York	Univeristy

Globecom	2011

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Use	of	controllers	in	routing

Ethane	(2007): Call	set-up	in	OpenFlow	network

VL2	(2009): MAC address	look-up	prior	to	forwarding

Hedera	(2010): Dynamic	flow	reroute

.

......
They’re omniscient controllers

Full	topology	information Scalable?

M.	Casado	et	al., “Ethane: Taking	control	of	the	enterprise,”	in	Proc. SIGCOMM,	2007.
A.	Greenberg	et	al., “VL2: A scalable	and	flexible	data	center	network,”	in	Proc. SIGCOMM,	2009.
M.	Al-Fares	et	al., “Hedera: Dynamic	flow	scheduling	for	data	center	networks,”	in	Proc. NSDI,	2010.

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Use	of	controllers	in	routing

Ethane	(2007): Call	set-up	in	OpenFlow	network

VL2	(2009): MAC address	look-up	prior	to	forwarding

Hedera	(2010): Dynamic	flow	reroute

.

......
They’re omniscient controllers

Full	topology	information Scalable?

M.	Casado	et	al., “Ethane: Taking	control	of	the	enterprise,”	in	Proc. SIGCOMM,	2007.
A.	Greenberg	et	al., “VL2: A scalable	and	flexible	data	center	network,”	in	Proc. SIGCOMM,	2009.
M.	Al-Fares	et	al., “Hedera: Dynamic	flow	scheduling	for	data	center	networks,”	in	Proc. NSDI,	2010.

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Use	of	controllers	in	routing

Ethane	(2007): Call	set-up	in	OpenFlow	network

VL2	(2009): MAC address	look-up	prior	to	forwarding

Hedera	(2010): Dynamic	flow	reroute

.

......
They’re omniscient controllers

Full	topology	information

Scalable?

M.	Casado	et	al., “Ethane: Taking	control	of	the	enterprise,”	in	Proc. SIGCOMM,	2007.
A.	Greenberg	et	al., “VL2: A scalable	and	flexible	data	center	network,”	in	Proc. SIGCOMM,	2009.
M.	Al-Fares	et	al., “Hedera: Dynamic	flow	scheduling	for	data	center	networks,”	in	Proc. NSDI,	2010.

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Use	of	controllers	in	routing

Ethane	(2007): Call	set-up	in	OpenFlow	network

VL2	(2009): MAC address	look-up	prior	to	forwarding

Hedera	(2010): Dynamic	flow	reroute

.

......
They’re omniscient controllers

Full	topology	information Scalable?

M.	Casado	et	al., “Ethane: Taking	control	of	the	enterprise,”	in	Proc. SIGCOMM,	2007.
A.	Greenberg	et	al., “VL2: A scalable	and	flexible	data	center	network,”	in	Proc. SIGCOMM,	2009.
M.	Al-Fares	et	al., “Hedera: Dynamic	flow	scheduling	for	data	center	networks,”	in	Proc. NSDI,	2010.

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Problems	of	omniscient	controllers

Full	detail	of	network: Cost	of	operation
Memory, storage, probing	bandwidth

Slow
Dijkstra’s	algorithm	is O(V2) or O(E+ V logV)
i.e. larger	the	network, slower	the	response	time

.

...... Omniscient	controllers	cannot	scale	with	the	network

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Problems	of	omniscient	controllers

Full	detail	of	network: Cost	of	operation
Memory, storage, probing	bandwidth

Slow
Dijkstra’s	algorithm	is O(V2) or O(E+ V logV)
i.e. larger	the	network, slower	the	response	time

.

...... Omniscient	controllers	cannot	scale	with	the	network

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Solution: Devolved	controllers

devolved = not	centralized

Together	is	a	centralized	controller,
with	complete	information

Scalable

Redundancy	is	almost	free

Favorible	to	those	who	needs	real-time	computation

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Multipath	network

A B

C

a

b
c

s

t

Each	controller	manages	a	partial	topology

Together	covers	the	whole	network

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Example: Dynamic	flow	reroute

A B

C

a

b
c

s

t

Controller	monitors	link	loads

Move	big	flows	off	heavily	loaded	links	dynamically

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Operation

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Reroute

When	a	big	flow	is	detected	by	an	edge	router...

..............

Controller	A

.

Controller	B

.

Controller	C

Edge	routers	send	flow	info	to	controllers

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Reroute

When	a	big	flow	is	detected	by	an	edge	router...

..............

Controller	A

.

Controller	B

.

Controller	C

Controller	install/remove	flow-based	routes	at	routers

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Reroute

When	a	big	flow	is	detected	by	an	edge	router...

..............

Controller	A

.

Controller	B

.

Controller	C

Forwarding	proceeds

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Look-up	tables

Look-up	table	at	edge

pair controllers
(s,p) a, b, c
(s,q) e, a, b
(s, t) a, c, d
...

...

Configuration	of	a	devolved	controller

pair paths controllers
(n1, n2) p1,p2,p3 a,b, c
(n2, n1) p4,p5,p6 b, a, c
(n2, n3) p7,p8,p9 a, c,d

...
...

...

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Configuration

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Configuration	of	devolved	controllers

A B

C

a

b
c

s

t

Paths	from s to t is	known	by	controller a

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Configuration	of	devolved	controllers

s

t

No	controller	covers	any	path	from s to t

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

How	to	configure?

Associate	part	of	a	network	to	a	controller, so	that
All	flows	are	reroutable	by	at	least	one	controller

So	that	all	requests	can	be	fulfilled

Minimize	the	number	of	links	covered	by	any	controller
So	that	monitoring	cost	can	be	minimized

Heuristic	algorithm:

Network	of n nodes	has n(n− 1) pairs

A pair	has k paths	that	a	flow	can	use

Iteratively	allocate	a	pair	into	a	controller

Minimize	num	of	links	allocated	to	a	controller

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

How	to	configure?

Associate	part	of	a	network	to	a	controller, so	that
All	flows	are	reroutable	by	at	least	one	controller

So	that	all	requests	can	be	fulfilled

Minimize	the	number	of	links	covered	by	any	controller
So	that	monitoring	cost	can	be	minimized

Heuristic	algorithm:

Network	of n nodes	has n(n− 1) pairs

A pair	has k paths	that	a	flow	can	use

Iteratively	allocate	a	pair	into	a	controller

Minimize	num	of	links	allocated	to	a	controller

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Path-partition	heuristic	algorithm

Data: Network G = (V, E), q =number	of	controllers
1 foreach s, t ∈ V in	random	order do

/* Retrieving a multipath from s to t */
2 M := k paths	joining s to t;

/* Allocate into controllers */
3 for i := 1 to q do
4 ci := cost	of	adding	multipath M to	controller i
5 end
6 Q := {1, . . . , q};
7 for i := 1 to r do

8 Allocate M to	controller j = argminj∈Q cj;
9 Remove j from Q;

10 Remove	other	controllers	from Q that	violate	the	resilience	constraints;
11 end
12 end

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Path-partition	heuristic	algorithm

k paths	are	prepared	for	each	pair

Shuffle	the	pairs	into	random	order

Allocate	each	pair M (k paths)	into	the r best	controllers

Guided	by	a	cost	function:

ci = ..α ..νi(M) + ..µi

.
Weighting	factor

.
#	links	in M that	is
not	yet	covered	by i
(Prefer	a	controller
that	already	covers
most	of	links	in M)

.
#	distinct	links
covered	by i

(Try	to	balance	the
number	of	links	in
each	controller).

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Partition-path	heuristic	algorithm

Data: Network G = (V, E), q =number	of	controllers
/* Partition links to controllers preliminarily */

1 foreach i := 1 to q do
2 Prepare	set	of	links Ei ⊂ E;
3 end

/* Enumerate multipaths and allocate into controllers */
4 foreach s, t ∈ V in	random	order do
5 foreach i := 1 to q do
6 Mi := Find k paths	for (s, t) with	priority	to Ei;
7 ci := cost	of	adding	multipath Mi to	controller i
8 end
9 Q := {1, . . . , q};

10 for i := 1 to r do
11 Allocate Mj to	controller j = argminj∈Q cj;
12 Ej := Ej ∪ {e : for	all	links e in Mj};
13 Remove j from Q;
14 Remove	other	controllers	from Q that	violate	the	resilience	constraints;
15 end
16 end

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Partition-path	heuristic	algorithm

Distribute	links	to	controllers	first	(partition)

Each	controller	finds k paths	for	a	pair

Select	the	best r according	to	the	cost	function

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

The	two	heuristic	algorithms

Partition-path	algorithm:
Fewer	#	links	per	controller

(Good	for	regular	topologies)

.

Path-partition	algorithm:
Guarantees	shortest-paths

(Good	for	irregular	topologies)

.............................

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

The	two	heuristic	algorithms

Partition-path	algorithm:
Fewer	#	links	per	controller

(Good	for	regular	topologies)

.

Path-partition	algorithm:
Guarantees	shortest-paths

(Good	for	irregular	topologies)

.............................

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Resilience

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Redundancy

Paths	for	every	pair	is	known	by r controllers

At	any	moment, only one of	the r controllers	is active

When	the	active	one	fails, another	controller	takes	over

Controllers	talk	to	each	other	with heartbeat	protocol

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Redundancy

Configuration	of	a	devolved	controller

pair paths controllers
(n1, n2) p1,p2,p3 a,b, c

...
...

...

Controller	priority: a > b > c

Controller a is	the	primary	controller	for	pair (n1,n2)

Controllers b and c are	the	secondary	controller

If	all	controllers	are	healthy, a is	the	active	controller

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Flow	chart	of	failover	algorithm

Primary
controller?

Send normal
heartbeat

Received
failover

heartbeat?

Active for reroute

Inactive for reroute

Higher priority
controller alive?

Send normal
heartbeat

Send failover
heartbeat

noyes

yes

no

no

Data
updated?

Synchronize data

yes

yes

no

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Heartbeat	messages

Normal	heartbeat: “I am X. I am	alive.”
Failover	heartbeat: “I am X. I am	taking	over	controllers Y and Z”

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Evaluation

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Optimality

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 5 10 15 20 25 30

N
u

m
b

er
 o

f
li

n
k
s

co
v

er
ed

 p
er

 c
o

n
tr

o
ll

er

Number of controllers

Algorithm 1
Sim Annealing

Heuristic	algorithm	is	as	good	as	simulated	annealing

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Number	of	paths	per	pair

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 5 10 15 20 25 30

N
u

m
b

er
 o

f
li

n
k

s
co

v
er

ed
 p

er
 c

o
n

tr
o
ll

er

Number of controllers

k = 1
k = 3
k = 5

k =	multiplicity	of	paths
More	paths	per	pair	does	not	significantly	increase	coverage	size

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Redundancy

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

N
u

m
b

er
 o

f
li

n
k

s
co

v
er

ed
 p

er
 c

o
n

tr
o
ll

er

Number of controllers

r = 1
r = 2
r = 3
r = 4

r =	redundancy	factor
Redundancy	is	almost	free

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Conclusion

.
Intro

. .
Operation

.
Config

. . . .
Resilience

. . .
Evaluation

.
Conclusion

Conclusion

Devolved	controllers	is	a	viable	concept

Heuristic	algorithms	proposed	to	help	configuration

Protocol	on	dynamic	flow	reroute	with	resilience

	Intro
	Operation
	Config
	Resilience
	Evaluation
	Conclusion

