Operation 00	Config 0000000		

Scalability and Resilience in Data Center Networks: Dynamic Flow Reroute as an Example A use case of devolved controllers

Adrian S.-W. Tam Kang Xi H. Jonathan Chao

Department of Electrical & Computer Engineering Polytechnic Institute of New York University

Globecom 2011

Intro	Operation	Config	Resilience	Evaluation	
●0000	00	0000000	0000	000	
Use o	f controlle	rs in routin	g		

- Ethane (2007): Call set-up in OpenFlow network
- VL2 (2009): MAC address look-up prior to forwarding
- Hedera (2010): Dynamic flow reroute

- Ethane (2007): Call set-up in OpenFlow network
- VL2 (2009): MAC address look-up prior to forwarding
- Hedera (2010): Dynamic flow reroute

They're *omniscient* controllers

- Ethane (2007): Call set-up in OpenFlow network
- VL2 (2009): MAC address look-up prior to forwarding
- Hedera (2010): Dynamic flow reroute

They're *omniscient* controllers

Full topology information

- Ethane (2007): Call set-up in OpenFlow network
- VL2 (2009): MAC address look-up prior to forwarding
- Hedera (2010): Dynamic flow reroute

They're *omniscient* controllers

Full topology information

Scalable?

Intro
oOperation
oConfig
oResilience
oEvaluation
oConclusion
oProblems of omniscient controllers

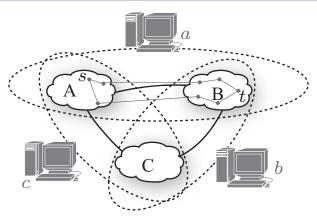
- Full detail of network: Cost of operation
 - Memory, storage, probing bandwidth
- Slow
 - Dijkstra's algorithm is $O(V^2)$ or $O(E + V \log V)$ i.e. larger the network, slower the response time

Intro Operation Config Resilience Evaluation Conclusion of Operation Conclusio

- Full detail of network: Cost of operation
 - Memory, storage, probing bandwidth
- Slow
 - Dijkstra's algorithm is $O(V^2)$ or $O(E + V \log V)$ i.e. larger the network, slower the response time

Omniscient controllers cannot scale with the network

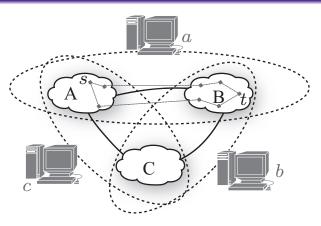
devolved = not centralized


- Together is a centralized controller, with complete information
- Scalable
- Redundancy is almost free
- Favorible to those who needs real-time computation

Intro ooo∙o	Operation 00	Config 000000		
A 4 14	a the sector of	al a		

Multipath network

- Each controller manages a partial topology
- Together covers the whole network



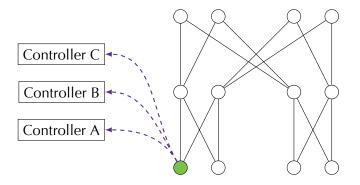
Intro 00000

Example: Dynamic flow reroute

- Controller monitors link loads
- Move big flows off heavily loaded links dynamically

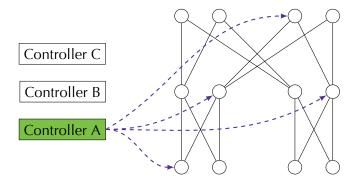
Operation		

Operation



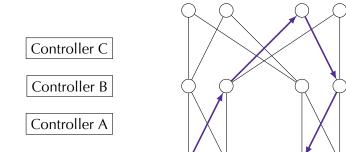
When a big flow is detected by an edge router...

Edge routers send flow info to controllers



When a big flow is detected by an edge router...

Controller install/remove flow-based routes at routers



When a big flow is detected by an edge router...

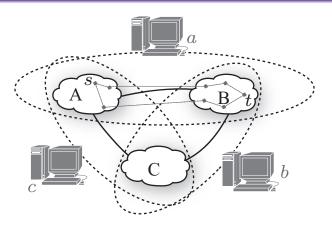
Forwarding proceeds

Intro	Operation	Config	Resilience	Evaluation	
00000	○●	0000000	0000	000	
Look-ı	up tables				

Look-up table at edge

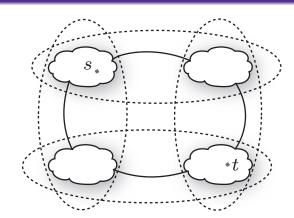
Configuration of a devolved controller

pair	controllers	pair	paths	controllers
(s,p)	a, b, c	(n_1, n_2)	ρ_1, ρ_2, ρ_3	a, b, c
(s,q)	e, a, b	(n_2, n_1)	$ ho_4, ho_5, ho_6$	b, a, c
(s,t)	a, c, d	(n_2, n_3)	p_7, p_8, p_9	a, c, d
÷	:	:	:	÷


Operation	Config		

Configuration

Intro Operation Config Resilience Evaluation Operation of devolved controllers


Paths from s to t is known by controller a

Intro Operation Config Resilience Evaluation Oco Conclusion

No controller covers any path from *s* to *t*

Associate part of a network to a controller, so that

- All flows are reroutable by at least one controller
 - So that all requests can be fulfilled
- Minimize the number of links covered by any controller
 - So that monitoring cost can be minimized

Associate part of a network to a controller, so that

- All flows are reroutable by at least one controller
 - So that all requests can be fulfilled
- Minimize the number of links covered by any controller
 - So that monitoring cost can be minimized

Heuristic algorithm:

- Network of *n* nodes has n(n-1) pairs
- A pair has k paths that a flow can use
- Iteratively allocate a pair into a controller
- Minimize num of links allocated to a controller

Data: Network G = (V, E), q =number of controllers **foreach** *s*, *t* \in *V in random order* **do**

```
/* Retrieving a multipath from s to t */
```

- 2 M := k paths joining s to t;
 - /* Allocate into controllers */
- 3 for i := 1 to q do
 - $c_i := \text{cost of adding multipath } M \text{ to controller } i$
- 5 end


4

- $G \qquad Q := \{1, \ldots, q\};$
- 7 for i := 1 to r do
- 8 Allocate *M* to controller $j = \arg \min_{j \in Q} c_j$;
- 9 Remove j from Q;
- 10 Remove other controllers from *Q* that violate the resilience constraints;
- 11 end
- 12 end

- k paths are prepared for each pair
- Shuffle the pairs into random order
- Allocate each pair *M* (*k* paths) into the *r* best controllers
- Guided by a cost function:

Weighting factor

links in M that is not yet covered by *i* (Prefer a controller that already covers most of links in M)

NYU

distinct links covered by *i* (Try to balance the number of links in each controller)

Intro Operation Config Resilience Evaluation Conclusion Operation Conclusion Operation Partition-path heuristic algorithm

Data: Network G = (V, E), q =number of controllers

/* Partition links to controllers preliminarily */

1 foreach i := 1 to q do

```
2 Prepare set of links \mathcal{E}_i \subset E;
```

3 end

6

7

/* Enumerate multipaths and allocate into controllers */

- 4 foreach $s, t \in V$ in random order do
- 5 foreach i := 1 to q do
 - $M_i :=$ Find k paths for (s, t) with priority to \mathcal{E}_i ;
 - $c_i := \text{cost of adding multipath } M_i \text{ to controller } i$

8 end

```
9 Q := \{1, \ldots, q\};
```

```
10 for i := 1 to r do
```

11 Allocate M_j to controller $j = \arg \min_{j \in Q} c_j$;

12
$$\mathcal{E}_j := \mathcal{E}_j \cup \{e : \text{ for all links } e \text{ in } M_j\};$$

13 Remove j from Q;

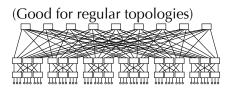
14 Remove other controllers from *Q* that violate the resilience constraints;

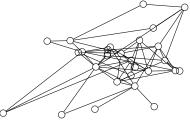
- 15 end
- 16 **end**

Intro Operation Config Resilience Evaluation Conclusion on Partition-path heuristic algorithm

- Distribute links to controllers first (partition)
- Each controller finds *k* paths for a pair
- Select the best *r* according to the cost function

Intro	Operation	Config	Resilience	Evaluation	
00000	00	000000●	0000	000	
The two	o heuristi	c algorithm	าร		


Partition-path algorithm: Fewer # links per controller Path-partition algorithm: Guarantees shortest-paths



Config 000000 <u>The two</u> heuristic algorithms

Partition-path algorithm: Fewer # links per controller Path-partition algorithm: Guarantees shortest-paths

(Good for irregular topologies)

Operation	Resilience	

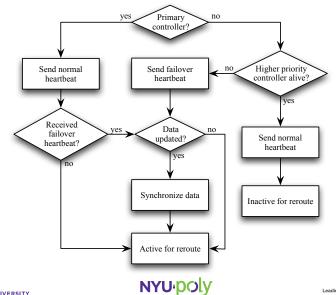
Resilience

Intro	Operation	Config	Resilience	Evaluation	
00000	00	0000000	●000	000	
Redur	ndancy				

- Paths for every pair is known by *r* controllers
- At any moment, only one of the r controllers is active
- When the active one fails, another controller takes over
- Controllers talk to each other with *heartbeat protocol*

Configuration of a devolved controller

pair	paths	controllers
(n_1, n_2)	ρ_1,ρ_2,ρ_3	a, b, c
÷	÷	÷

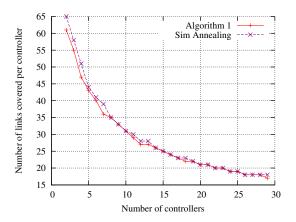

- Controller priority: a > b > c
- Controller *a* is the primary controller for pair (n_1, n_2)
- Controllers *b* and *c* are the secondary controller
- If all controllers are healthy, a is the active controller

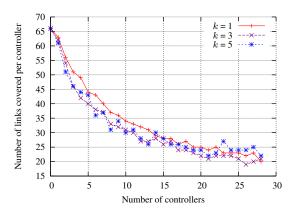
POINTECHNIC INSTITUTE OF NEW YORK UNIVERSIT

Intro	Operation	Config	Resilience	Evaluation	
00000	00	0000000	000●	000	
Heart	peat messa	ges			

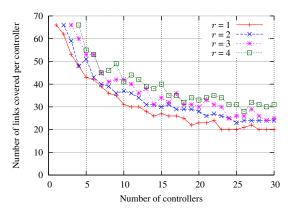
Normal heartbeat: *"I am X. I am alive."* Failover heartbeat: *"I am X. I am taking over controllers Y and Z"*

Operation	Config	Evaluation	


Evaluation



Heuristic algorithm is as good as simulated annealing



k = multiplicity of paths More paths per pair does not significantly increase coverage size

Intro	Operation	Config	Resilience	Evaluation	
00000	00	0000000	0000	00●	
Redur	ndancy				

r = redundancy factor Redundancy is almost free

	Operation				Conclusion
00000	00	000000	0000	000	0

Conclusion

NEW YORK UNIVERSITY

Intro	Operation	Config	Resilience	Evaluation	Conclusion
00000	00	0000000	0000	000	•
Concl	usion				

- Devolved controllers is a viable concept
- Heuristic algorithms proposed to help configuration
- Protocol on dynamic flow reroute with resilience

