Remedial Lesson 2: All the Differentiation You Needed

Prepared by Adrian Sai-wah TAM (swtam3@ie.cuhk.edu.hk)

September 19, 2005

1 Table of Differentiations

Rules	Formula		
Addition Rule			
Constant			
Product Rule			
Quotient Rule			
Chain Rule			
Parametric Function	$\frac{dy}{dx} = \frac{dy}{dt} \bigg/ \frac{dx}{dt}$		
Inverse Function	$\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$		
f(x)	f'(x)	f(x)	f'(x)
k		$\sin x$	
x		$\cos x$	
x ⁿ		tan x	
e^x		cotx	
$\ln x$		sec x	
		$\csc x$	

2 Exponential Functions

• We have something called _____, e = 2.717828...

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

- Raising *e* to the power of *x* (i.e. $f(x) = e^x$) is called the ______ function. For convenience, we may write it as $f(x) = \exp(x)$
- Differentiation:

$$\frac{d}{dx}e^x = e^x$$

• Example:

$$\frac{d}{dx}e^{-\lambda x} =$$

$$=e^{-\lambda x}\left(\begin{array}{c} \\ \end{array}\right)$$

$$=-\lambda e^{-\lambda x}$$

3 Logarithmic Function

- If $y = e^x$, then we define $x = \ln y$. Where ln is the _____.
- Differentiation:

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

• Example:

$$\frac{d}{dx}\ln(x^2) = \frac{d}{d(x^2)}\ln(x^2)$$
$$=$$
$$= \frac{2}{x}$$

Exercises

1. Evaluate $\frac{d}{dx} \left[\ln(e^{2x} + e^{2a}) - \ln(e^{x-a} + e^{a-x}) + \frac{a}{x} \tan x \right]$

2. Evaluate $\frac{d}{dx}(\ln \ln x)$

$$\frac{d}{dx}(\ln\ln x) =$$

3. Evaluate $\frac{d}{dx}\log_{10} x$

$$=\frac{\frac{d}{dx}\log_{10}x}{\frac{d}{dx}\left(\begin{array}{c} \end{array}\right)}$$

=

4. Evaluate $\frac{d}{dx} \exp(\tan x^2)$

5. If
$$f(x) = e^{-x/a} \cos(\frac{x}{a})$$
, find $f(0) + af'(0)$

$$\frac{d}{dx}f(x) = \frac{d}{dx}\left[e^{-x/a}\cos\left(\frac{x}{a}\right)\right]$$

$$= +e^{-x/a}\frac{d}{dx}\cos\left(\frac{x}{a}\right)$$

$$=$$

$$= -\frac{1}{a}e^{-x/a}\left[\cos\left(\frac{x}{a}\right) + \sin\left(\frac{x}{a}\right)\right]$$

$$\therefore \quad f'(0) = -\frac{1}{a}e^{0}\left[\cos(0) + \sin(0)\right]$$

$$= f(0) =$$

$$\therefore \quad f(0) + af'(0) =$$

6. Show that $y = \exp(2x) \sin x$ satisfies y'' - 4y' + 5y = 0

4 Differentiation of Inverse Function

• Rule of Thumb:

$$\frac{dy}{dx} = \frac{1}{dx/dy}$$

4.1 Inverse Trigonometric Functions

• Example:

Let
$$x = \sin y$$

 \therefore $y = \sin^{-1} x$
 $\frac{dx}{dy} = \cos y$
 $= \sqrt{1 - \sin^2 y}$
 $=$
 \therefore $\frac{dy}{dx} =$
 \therefore $\frac{d}{dx}(\sin^{-1} x) =$

• Formulae to be used:

$$\sin^2 x + \cos^2 x = 1$$
$$\sec^2 x = \tan^2 x + 1$$
$$\csc^2 x = \cot^2 x + 1$$

• Complete the following table:

$$\begin{array}{c|c|c} f(x) & f'(x) \\ \hline \sin^{-1}x & \frac{1}{\sqrt{1-x^2}} \\ \cos^{-1}x & \\ \tan^{-1}x & \\ \cot^{-1}x & \\ \sec^{-1}x & \\ \csc^{-1}x & \\ \csc^{-1}x & \\ \end{array}$$

4.2 Other inverse functions

• Example:

Let
$$y = \sqrt{x}$$

 $\therefore \qquad x = y^2$
 $\frac{dx}{dy} = 2y$
 $= 2\sqrt{x}$
 $\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$

Exercises

1. If $y = \sin^{-1} \frac{2x-7}{3}$, find $\frac{dy}{dx}$

2. If $y = \tan^{-1} e^x$, find $\frac{dy}{dx}$

3. If $y = \sec^{-1} \tan x$, find $\frac{dy}{dx}$

4. Show that if $y = (\sin^{-1} x)^2$, $(1 - x^2)y'' - xy' = 2$

5 Implicit Functions

- Implicit function: Those given as an equation, but not a function
- Example of ______ function: Circle equation

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

Example of ______ function: Semicircle

$$y = k + \sqrt{r^2 - (x - h)^2}$$

- Differentiation of implicit function: Use the rules to differentiate both side, then simplify
- Example: Find $\frac{dy}{dx}$ from the standard form of circle equation

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

$$\therefore \quad 2(x-h) + 2(y-k)\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{x-h}{y-k}$$

6 Application of Differentiation

6.1 Parametric functions

• Curves may be expressed as ______, such as circle, it can be expressed in standard form:

$$x^2 + y^2 = r^2$$

or in parametric form:

$$\begin{cases} x = r\cos\theta\\ y = r\sin\theta \end{cases}$$

• If a curve is presented in parametric form, the derivative $\frac{dy}{dx}$ is given by

$$\frac{dy}{dx} = \frac{dy}{d\theta} \bigg/ \frac{dx}{d\theta}$$

• Example: Use the parametric form of circle

$$\begin{cases} x = r\cos\theta + h\\ y = r\sin\theta + k \end{cases}$$

/

to find $\frac{dy}{dx}$.

$$x = r\cos\theta + h$$

$$\therefore \quad \frac{dx}{d\theta} = -r\sin\theta$$

$$y = r\sin\theta + k$$

$$\therefore \quad \frac{dy}{d\theta} = r\cos\theta$$

$$\therefore \quad \frac{dy}{dx} =$$

$$=$$

$$= -\frac{x - h}{y - k}$$

6.2 Find tangents and normals

- Tangents: Limit of chord on a curve
- Normals: Lines cutting the curve and perpendicular to the tangent at that point
- Differentation can help to find the slope, so that you can use straight line formulae to find the tangents or normals
- Example: Find the equation of tangent at point (0,2) from the circle $x^2 + y^2 = 4$.

$$x^{2} + y^{2} = 4$$

∴ $2x + 2y \frac{dy}{dx} = 0$
 $\frac{dy}{dx} = \frac{x}{y}$
∴ $\frac{dy}{dx}\Big|_{(0,2)} = \frac{0}{2} = 0$
∴ Equation is: $y - 2 = 0(x - 0)$
 $\implies y = 2$

Exercises

1. Determine the constants A and B such that the normal to the curve $y = Ae^x + Be^{-x}$ at (0,2) will be parallel to the line 3x - y = 4

$$y = Ae^{x} + Be^{-x}$$

$$\frac{dy}{dx} = Ae^{x} - Be^{-x}$$

$$\therefore \qquad \frac{dy}{dx}\Big|_{(0,2)} = A - B = 3 \quad \text{(slope)}$$

$$2 = Ae^{0} + Be^{0} = A + B \quad \text{(point)}$$

$$\implies \qquad \left[\qquad \right] \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

2. Prove that curves $y = \exp(x^2)/ex$ and $y = x^2 - \ln x^3$ intersect at right angles at the point (1,1)

3. Find the equation of the tangent at $t = t_1$ to the curve given by the parametric equations $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$

4. Find the equations of tangent and normal at the point (4,3) to the curve given by the parametric equations $x = t^2$ and y = 2t - 1. Show that the normal cuts the curve again at the point where t = -3.

5. Find the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when $t = \frac{\pi}{2}$ in the following parametric equations: $\begin{cases} x = a(nt - \sin t) \\ y = a(t + \sin t) \end{cases}$