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1 Find area using integration

• Given the curvey = f (x) in Cartesian coordinates, the area under the curve fromx = a to x = b is given by

A =
∫ b

a
f (x)dx

• Given the curver = f (θ) in polar coordinates, the area bounded by the curve and the radial vectorsθ = a andθ = b is

given by

A =
1
2

∫ b

a
r2dθ

• Actually, polar coordinate and Cartesian coordinate can be interchanged:

r2 = x2 +y2 x = r cosθ

θ = tan−1 y
x

y = r sinθ

• Example: Find the area of circle with radiusr in Cartesian coordinate

Equation:x2 +y2 = r2

∴ y2 = r2−x2

∴ A = 2
∫ r

−r

√
r2−x2dx

= 2
∫ r

−r

√
r2− r2sin2 td(r sint) (subx = r sint)

= 2
∫

π/2

−π/2
r2

√
1−sin2 t costdt

= 2r2
∫

π/2

−π/2
cos2 tdt

= 2r2
∫

π/2

−π/2

1+cos2t
2

dt

= r2
[
t +

1
2

sin2t

]π/2

−π/2

= πr2
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• Example: Find the area of circle with radiusr in Polar coordinate

A =
1
2

∫ 2π

0
r2dθ

=
1
2

r2
∫ 2π

0
(1)dθ

=
1
2

r2 [θ ]2π

0

= πr2

• Example: Find
∫ ∞

0 e−x2
dx∫ ∞

0
e−x2

dx

=
√∫ ∞

0
e−x2dx·

∫ ∞

0
e−y2dy

=
√∫ ∞

0

∫ ∞

0
e−(x2+y2)dxdy

x2 +y2 = r2

dxdy = 1
2d(r2)dθ

=

√∫ ∞

0

∫
π/2

0
e−r2rdθdr (integration of first quadrant)

=

√∫ ∞

0

∫
π/2

0
dθe−r2rdr

=
√

π

2

∫ ∞

0
re−r2dr

=
√

π

4

∫ ∞

0
e−r2dr2

=
√

π

4

[
−e−r2]∞

0

=
√

π

4
[0− (−1)]

=
√

π

2

2 Find limit using L’Hôpital’s Rule

• Limit means the value of a function as the variable approaches a value

– Example: Asx tends to 1,f (x) = x+1 tends to 2, i.e. lim
x→1

f (x) = 2

– Example:

lim
x→2

x2−4x+4
x−2

= lim
x→2

(x−2)2

x−2
= lim

x→2
(x−2) = 0

• We usually interested at the limit towards∞, −∞, and 0

lim
x→∞

x2 +2
x

= ∞

lim
x→−∞

x+1
x+2

= 1

lim
x→0

x+1
x2 = ∞
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• Sometimes, we cannot find the limit so easily, so we have the l’Hôpital’s rule:

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

this is applicable when the direct substitution have the undeterminate forms:
∞
∞

,
0
0

, 0·∞, ∞−∞, 00, ∞0, 1∞

• Example:

lim
x→1

x−1√
x2−1

= lim
x→1

1

2x
/

2
√

x2−1

= lim
x→1

√
x2−1

x

=
0
1

= 0

• Example:

lim
x→0

tanx
tan3x

= lim
x→0

sec2x
3sec23x

=
1
3

• Example:

lim
x→0

tanxlnx = lim
x→0

lnx
cotx

= lim
x→0

1/x
−csc2x

= lim
x→0

−sin2x
x

= lim
x→0

−2sinxcosx
1

= 0

• Example:

lim
x→0

sinx
x

= lim
x→0

cosx
1

=
1
1

= 1



Remedial Lesson 6: Application of Calculus I 4

3 Verify Series Convergence by Integration

• Given the monotonically decreasing functionf (x), the infinite series,
∞
∑

x=k
f (x) is bounded (i.e. not infinitely large), if and

only if
∫ ∞ f (x)dx also bounded (evaluate only the upper limit)

• Example:

1
x

>
1

x+1
∴ decreasing∫ ∞ 1

x
dx= [lnx]∞

= ln∞

= ∞

∴
∞

∑
x=1

1
x

= ∞ i.e. diverging series

• Example:

1
x2 >

1
(x+1)2 ∴ decreasing∫ ∞ 1

x2 dx=
[
−1
x

]∞

= 0

< ∞

∴
∞

∑
x=1

1
x2 < ∞ i.e. converging

• Example: Check for the convergence of
∞

∑
n=1

n2

n3 +1

∫ ∞ x2

x3 +1
dx=

∫ ∞ d(x3)
3(x3 +1)

=
[

1
3

ln(x3 +1)
]∞

= ∞

∴
∞

∑
n=1

n2

n3 +1
= ∞ (diverging)

• Example: Check for the convergence of
∞

∑
n=1

1√
n2 +9

∫ ∞ 1√
x2 +9

dx=
∫

π/2 3sec2 tdt√
9tan2 t +9

(subx = 3tant)

=
∫

π/2
sectdt

= [ln |sect + tant|]π/2

= ln |∞|

= ∞

∴
∞

∑
n=1

1√
n2 +9

is diverging
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4 Approximation using Differentials

• Differential:

dy= f (x)dx

• Hence we can approximate the derivation ofy by

f (x+∆x) = y+∆y

≈ f (x)+ f ′(x)∆x

• This is the basis for “small perturbation analysis” and why we need to study linear systems in detail

• Example: Find agoodapproximate of
√

4.1 without using calculator

d
dx

√
x =

1
2
√

x

∴
√

4+0.1≈
√

4+
1

2
√

4
(0.1)

= 2+
1
4
(0.1)

= 2.025

Actually,
√

4.1 = 2.02484567...

• Example: Find a good approximate of3
√

7 without using calculator

d
dx

3
√

x =
1

3 3
√

x2

∴ 3
√

7 = 3
√

8−1

≈ 3
√

8+
1

3 3
√

82
(−1)

= 2+
1

3(22)
(−1)

= 2− 1
12

= 2−0.08333...

= 1.91666...

Actually, 3
√

7 = 1.9129311...

• Example: Find a good approximate ofπ2

d
dx

x2 = 2x

π
2 = (3.1415926...)2

≈ 32 +2(3)(0.1415926...)

= 9+6(0.1415926...)

= 9.849555...

Actually, π
2 = 9.8696044...
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5 Using integration to solve differential equations

• Differential equations is the equation involving derivatives of functions

• Example:

f (x)+
d
dx

f (x) = x2 +2x

• Solving differential equation means finding out the function, for example, the solution for the above equation isf (x) = x2.

• The easiest form of differential equation is the separable equation, namely, we can write the equation in the form:

g(y)
dy
dx

= f (x)

which can be solved by:

g(y)
dy
dx

= f (x)

g(y)dy= f (x)dx

∴
∫

g(y)dy=
∫

f (x)dx

• Example: Solvey for
dy
dx

=
y2

1+x2

dy
dx

=
y2

1+x2

∴
1
y2 dy=

1
1+x2 dx∫

1
y2 dy=

∫
1

1+x2 dx

−1
y

= tan−1x+C

y =
−1

tan−1x+C

• Example: Solvey for
dy
dx

=

√
1−y2

√
1−x2

, giveny = 1 whenx = 0

dy
dx

=

√
1−y2

√
1−x2∫

1√
1−y2

dy=
∫

1√
1−x2

dx

sin−1y = sin−1x+C

∵ sin−11 = sin−10+C
π

2
= C

∴ sin−1y = sin−1x+
π

2

y = sin(sin−1x)cos
π

2
+cos(sin−1x)sin

π

2

= cossin−1x

=
√

1−x2
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• Example: A stationary particle of massm fall under gravity. When it has velocityv, it experiences a resistance force

f (v) =−2v. Express displacements in terms of timet.

v =
dx
dt

v = u+
∫

a(t)dt

=
∫

a(t)dt

Acceleration satisfies:F = ma

mg−2v = ma

a =
mg−2v

m

∴ v =
∫ (

mg−2v
m

)
dt

mv= mgt−2
∫

vdt

= mgt−2s

m
ds
dt

= mgt−2s

ms= e−2t
∫

e2tmgtdt

=
1
2

e−2t
[
e2tmgt−mg

∫
e2tdt

]
=

1
2

e−2t
[
e2tmgt− 1

2
e2tmg+C

]
s=

1
2

gt− 1
4

g+C′e−2t

0 =
1
2

gt− 1
4

g+C′

C′ =
1
4

g

s=
1
4

g(2t +e−2t −1)

6 Maclaurin Series and Taylor Series

• Maclaurin Series is to expressanyfunction f (x) as the infinite power series:

f (x) =
∞

∑
k=0

xk

k!
f (k)(0)

= f (0)+x f ′(0)+
x2

2
f ′′(0)+

x3

3!
f ′′′(0)+ · · ·+ xn

n!
f (n)(0)+ · · ·

• Taylor Series is a generalization of Maclaurin Series:

f (x) =
∞

∑
k=0

(x−a)k

k!
f (k)(a)

= f (a)+(x−a) f ′(0)+
(x−a)2

2
f ′′(a)+

(x−a)3

3!
f ′′′(a)+ · · ·+ (x−a)n

n!
f (n)(a)+ · · ·

so we usually call Maclaurin series as Taylor series.

• With Taylor series, everything can be expressed as polynomial
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• Example: Expressex as Taylor series

ex =
∞

∑
k=0

xk

k!
f (k)(0)

=
∞

∑
k=0

xk

k!
e0

=
∞

∑
k=0

xk

k!

= 1+x+
x2

2!
+

x3

3!
+ · · ·

• Example: Express sinx as Taylor series

sinx =
∞

∑
k=0

xk

k!
f (k)(0)

=
∞

∑
k=0

xk

k!
sin(0+

kπ

2
)

=
∞

∑
k=0

(−1)k x2k+1

(2k+1)!

= x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

• Example: Express cosx as Taylor series

cosx =
∞

∑
k=0

xk

k!
f (k)(0)

=
∞

∑
k=0

xk

k!
cos(0+

kπ

2
)

=
∞

∑
k=0

(−1)k x2k

(2k)!

= 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

• Example: Express1
x+1 as Taylor series

1
x+1

=
∞

∑
k=0

xk

k!
f (k)(0)

=
∞

∑
k=0

xk

k!
· dk

dxk (x+1)−1

=
∞

∑
k=0

xk

k!

[
(−1)kk!(x+1)−1−k

∣∣∣
x=0

]
=

∞

∑
k=0

(−1)kxk

= 1−x+x2−x3 +x4−·· ·


