ERG2011A Tutorial 1: Fundamental Vector Calculus

Prepared by Adrian Sai-wah TAM (swtam3@ie.cuhk.edu.hk)

10th September 2004

1 Key Information

Course homepage: http://course.ie.cuhk.edu.hk/ e erg2011a/Newsgroup: news://news.erg.cuhk.edu.hk/cuhk.erg.2011a Lecturer: Prof Kim Chang-su (SHB 707) Tutors: Kong-wa (SHB 803) and Adrian (SHB 826A)

Lectures: M3-4 (SC LG23), H3 (LHC 103) Tutorials: M2, W5

2 Vectors as in High School

- \bullet Vectors: () and (
 - Example: "North 30m"
- Vectors in 2D: in Cartesian plane
 - Unit vectors: ${\bf i}$ ($$) and ${\bf j}$ ($$
 - Handwritten form: \vec{i} and \vec{j}
 - Ordered-pair form: () = (x, y)
- Vector () product / Inner product
 - Example of use in Physics: (), i.e. $W = Fs\cos\theta$
 - * Vector notation: $W = \vec{F} \cdot \vec{s}$
 - Example: $\mathbf{v_1} = 4\mathbf{i} + 6\mathbf{j}$ and $\mathbf{v_2} = 3\mathbf{i} 3\mathbf{j}$ then $\mathbf{v_1} \cdot \mathbf{v_2} =$

or alternatively, $\mathbf{v_1} \cdot \mathbf{v_2} =$

- Vector dot product can be generalized for n-dimensional cases, e.g. n=4

$$(u_1, u_2, u_3, u_4) \cdot (v_1, v_2, v_3, v_4) = u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4$$

_	When	we do a	dot pr	oduct of	fa:	vector with	itself.	we :	get the	square	of its (,	,

- * Denoted by: $\mathbf{x} \cdot \mathbf{x} =$
- * Sometimes, we call this value the Euclidean norm of vector \mathbf{x} , denoted by $||\mathbf{x}||$

• Vector cross product

- Example of use in Physics: Force according to Faraday's Law: $F = BI\ell \sin \theta$
- Vector cross product is defined only in () space
- Magnitude of vector cross product: $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$
- Please note that, the θ here should be:

Reason: To keep (

- Vector triple product:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

3 Vector Functions and Scalar Functions

- Function = Mapping of an input to an (
- Notation: $f: \mathbb{R} \to \mathbb{R}$
- Classification of function (1) Real number as input and output
 - Example: $f(x) = \sin(x)$
 - * Input domain:
 - * Output range:
 - Example: $f(x) = \sqrt{x}$
 - * Input domain:
 - * Output range:
- Classification of function (2) Vector as input and output
 - Example: $\vec{a}(\vec{F}) = \vec{F}/m$
 - * Input domain:
 - * Output range:

- Example: $\vec{c}(\vec{x}, \vec{y}) = \vec{x} \times \vec{y}$
 - * Input domain:
 - * Output range:
- Classification of function (3) Real number as input, vector as output
 - Example: $\vec{v}(t) = 4t\vec{i} + \frac{2}{t}\vec{j}$
 - * Input domain:
 - * Output range:
- Classification of function (4) Vector as input, real number as output
 - Example: $f(\vec{x}) = |\vec{x}| = \sqrt{\vec{x} \cdot \vec{x}}$
 - * Input domain:
 - * Output range:
- Summary:

- We learnt about scalar function in high school
- We are interested in vector functions in ERG2011A, especially functions in class (4)
- We call the study of integration and differentiation of vector functions the **vector calculus**