ERG2011A Tutorial 3: Vector Integration

Prepared by Adrian Sai-wah TAM (swtam3@ie.cuhk.edu.hk)

27th September 2004

1 Line Integral

• Notation of line integral:

$$\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$$

- Summing up all the vectors from function $\mathbf{F}(\mathbf{r})$ where \mathbf{r} is a vector parameter (e.g. a point in space) supplied to \mathbf{F}
- The summation is adding all the $\mathbf{F} \cdot \mathbf{r}$ such that \mathbf{r} is sweeping the curve C
- Meaning of the line integral:

$$\begin{split} \int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} &= \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt \\ &\approx \sum_{a \leq t \leq b} \mathbf{F}(\mathbf{r}(t)) \cdot d\mathbf{r} \\ &\approx \sum_{a \leq t \leq b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t} \end{split}$$

)

- We cannot integrate for r sweeping () because we cannot represent it mathematically
- Instead, we represent \mathbf{r} as a () of t, and then when
 - $* t = a, \mathbf{r}$ is the () point of C
 - * t = b, **r** is the () point of C
- $*~a < t < b, \, \mathbf{r}$ is sweeping (
- Example of use: Work done of motion in non-straight line

1.1 Calculation 1 LINE INTEGRAL

- No matter how "fast" or how "slow" your () are sweeping, the result is just C i.e. The value of the line integral does not depend on the choice of representation of C
- But the line integral () depend on the actual path of C

1.1 Calculation

- Representing $\mathbf{F}(\mathbf{r}(t))$ as:
 - Components of F along x-, y-, and z-axes
- Representing $\mathbf{r}(t)$ as:
 - A moving point, as a parameter supplied to F
- Then we have $d\mathbf{r} = (dx, dy, dz)$, and then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot d\mathbf{r}(t)$$

$$= \int_{a}^{b} (F_{1}, F_{2}, F_{3}) \cdot ()$$

$$= \int_{a}^{b} (F_{1}dx + F_{2}dy + F_{3}dz)$$

• Also,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt$$

$$= \int_{a}^{b} (F_{1}, F_{2}, F_{3}) \cdot () dt$$

$$= \int_{a}^{b} [F_{1}x'(t) + F_{2}y'(t) + F_{3}z'(t)] dt$$

• Example: Problem Set 9.1 Question 8 Find $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ for $\mathbf{F} = [x - y, \ y - z, \ z - x]$ and C defined as the locus of $\mathbf{r} = [2\cos t, \ t, \ 2\sin t]$ from (2,0,0) to $(2,2\pi,0)$

– Step 1: We try to use
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt$$

- $* \mathbf{r} = [2\cos t, t, 2\sin t]$
- * $(2,0,0) \implies \mathbf{r}()$, i.e. t = a
- * $(2, 2\pi, 0) \implies \mathbf{r}()$, i.e. t = b
- Step 2:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt = \int_{a}^{b} \left[F_{1}x'(t) + F_{2}y'(t) + F_{3}z'(t) \right] dt
= \int_{0}^{2\pi} \left[(x - y)() + (y - z)() + (z - x)() \right] dt
= \int_{0}^{2\pi} \left[() \cdot (-2\sin t) + () + () + () \cdot 2\cos t \right] dt
= \int_{0}^{2\pi} \left[-2t\sin t + t - 2\sin t - 4\cos^{2}t \right] dt
= -2 \left[\sin t - t\cos t \right]_{0}^{2\pi} + \left[\frac{1}{2}t^{2} \right]_{0}^{2\pi} - 2 \left[-\cos t \right]_{0}^{2\pi} - 4 \left[\frac{1}{2}t + \frac{1}{4}\sin 2t \right]_{0}^{2\pi} = 2\pi^{2}$$

2 Path-independent Line Integrals

- Remember: Line integral may depend on the actual path of C
 - When will it depend, and when will it independent?
- Theorem 1:

Line integral $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ is independent of the path in domain D if and only if \mathbf{F} is a gradient of some function f in D, i.e. $\mathbf{F} = \operatorname{grad} f$.

(For proof, read book page 472)

- The example given in page 1 is a path-independent line integral
 - * Because it is a potential enrgy problem
- If the line integral is path-independent, we have

$$\int_{\mathbf{A}}^{\mathbf{B}} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = f(\mathbf{B}) - f(\mathbf{A})$$

where **A** and **B** are the initial and terminal points of curve C and $\mathbf{F} = \operatorname{grad} f$.

- In some applications, we call f the () of F.
 In other words, the line integral is independent of path in D if and only if F is the gradient of a potential in D.
- Theorem 2:

Line integral $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ is independent of path in domain D if and only if $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = 0$ for all closed path C in D.

(For proof, read book page 473 — but it is intuitive)

• Theorem 3:

Line integral $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ is independent of the path in domain D if and only if $\operatorname{curl} \mathbf{F} = \mathbf{0}$

- Implies: Differential form of $\mathbf{F} \cdot d\mathbf{r}$ is (), i.e.

$$F_1 dx + F_2 dy + F_3 dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz = df$$

or equivalently,

$$\frac{\partial F_3}{\partial y} = \frac{\partial F_2}{\partial z}, \quad \frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}, \quad \frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$$

• Example: Problem Set 9.2, Question 8

Show that the form under the integral sign in exact in space and evaluate the integral: $\int_{(\pi,\pi/2,2)}^{(0,\pi,1)} (-z \sin xz dx + \cos y dy - x \sin xz dz)$

- Show:

*
$$F_1 dx + F_2 dy + F_3 dz = -z \sin xz dx + \cos y dy - x \sin xz dz$$
,
therefore $F_1 = -z \sin xz$, $F_2 = \cos y$, $F_3 = -x \sin xz$
* $\frac{\partial F_3}{\partial y} = 0$, $\frac{\partial F_2}{\partial z} = 0$
* $\frac{\partial F_1}{\partial z} = -\sin xz - xz \cos xz$, $\frac{\partial F_3}{\partial x} = \frac{\partial F_2}{\partial x} = 0$, $\frac{\partial F_1}{\partial y} = 0$

* We have shown that $\frac{\partial F_3}{\partial y} = \frac{\partial F_2}{\partial z}$, $\frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}$, $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$ and hence it is exact.

- Evaluate:
 - * It is path independent, thus the value of the integral is $f(0,\pi,1) f(\pi,\pi/2,2)$.
 - * Finding f:

$$f = \int F_1 dx = \int F_2 dy = \int F_3 dz$$

$$\int F_1 dx = \int (-z \sin xz) dx$$

$$= \cos xz + g(y,z) \quad \text{*here's } g(y,z) \text{ is a "constant of integration"}$$

$$\frac{\partial f}{\partial y} = 0 + \frac{\partial g}{\partial y} =$$

$$g(y, z) = \int F_2 dy = \int \cos y dy$$

$$= +h(z)$$

$$\frac{\partial f}{\partial z} = -x\sin xz + 0 + \frac{\partial h}{\partial z} = h(z) =$$

 $f = \cos xz + \sin y + c$ for some constant of integration c

- Subtraction:

$$f(0,\pi,1) - f(\pi,\pi/2,2) = [\cos(0\cdot 1) + \sin\pi] - [\cos 2\pi + \sin\frac{\pi}{2}]$$

= = -1

3 Double Integrals

- Double Integrals \neq Repeated integral or Iterated integral
- Double integral:

$$\iint_{R} f(x,y) dx dy$$

- Adding f(x,y) for all the (x,y) in the region R
- The differential dxdy is a whole to mean a tiny area in region R
- Use: Finding center of gravity, Finding volume of arbitrary body
- Evaluation of double integral: Using interated integrals

$$\iint_{R} f(x,y)dxdy = \int_{a}^{b} \left[\int_{g(x)}^{h(x)} f(x,y)dy \right] dx = \int_{c}^{d} \left[\int_{p(y)}^{q(y)} f(x,y)dx \right] dy$$

- Using function g(x) and h(x) to draw a boundary for f(x,y), as follows:

• Techniques: Change of variable in double integral:

$$\iint_{R} f(x,y) dx dy = \iint_{R'} f(x(u,v), y(u,v)) \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} du dv$$

- -R becomes R', but they are the same region in different (
- The area dxdy in original domain system becomes in the new domain
- The determinant, $\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$ is called the (
- Example of use: Polar coordinate system ↔ Cartesian coordinate system
- Example: Problem Set 9.3 Question 10 Describe the region of integration and evaluate $\int_0^{\pi/4} \int_0^{\cos y} x^2 \sin y dx dy$
 - -y is from 0 to $\pi/4$
 - -x is from 0 to $\cos y$, i.e. p(y) = 0 and $q(y) = \cos y$
 - The region of integration is therefore $\frac{1}{8}$ cycle of the cosine curve, i.e. the area bounded by x- and y-axes and the curve $x = \cos y$

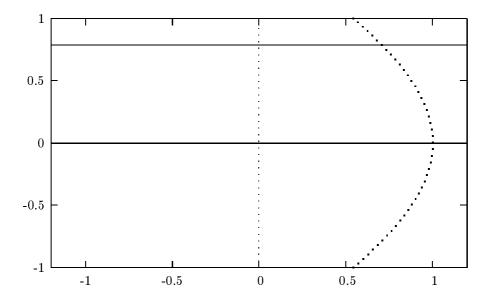


Figure 1: Region of Integration

- Evaluation:

$$\int_0^{\pi/4} \int_0^{\cos y} x^2 \sin y dx dy = \int_0^{\pi/4} \sin y \left(\int_0^{\cos y} x^2 dx \right) dy$$

$$= \int_0^{\pi/4} \sin y \left(\frac{1}{3} \cos^3 y \right) dy$$

$$= \frac{1}{3} \int_0^{\pi/4} \sin y \cos^3 y dy$$

$$= \frac{1}{24} \left[-\cos 2y - \frac{\cos 4y}{4} \right]_0^{\pi/4}$$

$$= \frac{1}{16}$$

4 Summary of formula

Line integral:
$$\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{a}^{b} \left[F_{1} x'(t) + F_{2} y'(t) + F_{3} z'(t) \right] dt$$
Path-independent Line integral:
$$\int_{\mathbf{A}}^{\mathbf{B}} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = f(\mathbf{B}) - f(\mathbf{A}) \quad \text{where } \mathbf{F} = \text{grad } f$$

$$\text{Exact:} \quad \frac{\partial F_{3}}{\partial y} = \frac{\partial F_{2}}{\partial z}, \quad \frac{\partial F_{1}}{\partial z} = \frac{\partial F_{3}}{\partial x}, \quad \frac{\partial F_{2}}{\partial x} = \frac{\partial F_{1}}{\partial y}$$
Double integral:
$$\iint_{R} f(x, y) dx dy = \int_{a}^{b} \left[\int_{g(x)}^{h(x)} f(x, y) dy \right] dx = \int_{c}^{d} \left[\int_{p(y)}^{q(y)} f(x, y) dx \right] dy$$
Change of variable:
$$\iint_{R} f(x, y) dx dy = \iint_{R'} f(x(u, v), y(u, v)) \left| \begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right| du dv$$