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1 Green's Theorem in the Plane

• Line integral:
∫

C
F(r) · dr

� Summing up all the vectors from function F(r) where r is a vector parameter (e.g. a point in space) supplied
to F, sweeping along curve C

� If curve C is a closed loop, we may write
∮

C
F(r) · dr

• Double integral can be transformed into line integral:
∫∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∮

C

(F1dx + F2dy)

� Known as Green's Theorem

� R is a closed bounded region in the xy-plane and its boundary is C

� C consists of �nite smooth curves

� Functions F1(x, y) and F2(x, y) are continuous and di�erentiable everywhere in R as required

• Alternative form of Green's Theorem:
∫∫

R

(curlF) · kdxdy =
∮

C

F · dr where F = F1i + F2j

� Proof of Green's Theorem see book pp.486-488.

• Remember a fact at this moment:

� Counterclockwise is ( )

� Clockwise is ( )

1.1 Application of Green's Theorem

• Area of plane by using line integral: A = 1
2

∮
C

(xdy − ydx)

� Example: Problem Set 9.4, Question 12

∗ Cycloid (in vector notation): r = a(t− sin t)i + a(1− cos t)j, for 0 ≤ t ≤ 2π

∗ Parametric form:
{

x =
y =

∗ From the plot, we can see that the direction of counterclockwise is for t from to
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1.1 Application of Green's Theorem 1 GREEN'S THEOREM IN THE PLANE
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Figure 1: Problem Set 9.4, Question 12

∗ Area:

A =
1
2

∮

C

(xdy − ydx)

=
1
2

∫ 0

2π

dt

=
1
2

∫ 0

2π

[
a2(t sin t− sin2 t)− ]

dt

=
a2

2

∫ 0

2π

[
t sin t− sin2 t− 1 + 2 cos t− cos2 t

]
dt

=
a2

2

∫ 0

2π

[ ] dt

=
a2

2

[
sin t− t cos t + 2 sin t− 2t

]0

2π
=

• Polar version: A = 1
2

∮
C

r2dθ

� Example: Problem Set 9.4, Question 13

∗ Limaçon (in polar equation): r = 1 + 2 cos θ, for 0 ≤ θ ≤ π/2

∗ Because in polar, the counterclockwise is well known, i.e. for θ from to
∗ Area is therefore:

A =
1
2

∮

C

r2dθ

=
1
2

∫ π/2

0

(1 + 2 cos θ)2dθ

=
1
2

∫ π/2

0

dθ

=
1
2

∫ π/2

0

[
1 + 4 cos θ + 4

(
1 + cos 2θ

2

)]
dθ

=
1
2

[
3θ + 4 sin θ + sin 2θ

]π/2

0
=
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2 SURFACE INTEGRALS

2 Surface Integrals

2.1 Tangents of surface

• Surface in the xyz-space: z = f(x, y) or g(x, y, z) = 0
Parametric form of surface: r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k

� Note that curve in space is r(t) = x(t)i + y(t)j + z(t)k, which has only ( ) parameter, not two

• Example surface: A sphere: r(u, v) = a cos u cos vi + a cos v sin uj + a sin vk

• For a curve, the tangent is a line as the limit of the chord
For a surface, the tangent is a plane containing all the tangent of the curves on that surface

� A curve on the surface can be de�ned by relating parameters u and v:

r̃(t) = r(u(t), v(t))

� Tangents of this curve is therefore:

r̃′(t) =
dr̃
dt

=
∂r
∂u

u′ +
∂r
∂v

v′ = ruu′ + rvv′

� Therefore, the tangent plane is a plane spanned by , i.e. h
∂r
∂u

+ k
∂r
∂v

.

• Because the tangent plane is spanned by ru and rv, the normal on that plane is in the direction
N =( ).

� Unit normal vector of a surface is de�ned to be: n =
1

|ru × rv|ru × rv

� If the surface S is represented by g(x, y, z) = 0, in addition, we can get the unit normal vector by:
n =

1
|grad g|grad g

• Remember: The actual tangent plane and unit normal vector depends on the ( ) of surface

• Example: Problem Set 9.5, Question 9
Find the normal vector of the elliptic cylinder: r(u, v) = [a cos v, b sin v, u]

� ∂r
∂u

=

� ∂r
∂v

= −a sin vi + b cos vj

� Normal vector N =
∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣∣

i j k

0 0 1
−a sin v b cos v 0

∣∣∣∣∣∣∣
=
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2.2 Flux Integral / Surface Integral 2 SURFACE INTEGRALS

2.2 Flux Integral / Surface Integral

• The �ux (mass of �uid per unit time) across a surface is given by the surface integral,
∫∫

S

F · ndA =
∫∫

R

F[r(u, v)] ·N(u, v)dudv

� S in domain A is identical to R in the uv-plane

� In calculation, we may write:

F = F1i + F2j + F3k

n = cos αi + cosβj + cos γk

N = N1i + N2j + N3k

then we can have:
∫∫

S

F · ndA =
∫∫

S

(F1 cosα + F2 cosβ + F3 cos γ)dA

∫∫

S

F · ndA =
∫∫

R

(F1N1 + F2N2 + F3N3)dudv

∫∫

S

F · ndA =
∫∫

S

(F1dydz + F2dzdx + F3dxdy)

They are all equivalent. Read book pp.496-500 for the derivation of them.

� Example: Problem Set 9.6, Question 9
F = [x, y, z], S : r = [u cos v, u sin v, u2] where 0 ≤ u ≤ 4 and −π ≤ v ≤ π. Find

∫∫
S
F · ndA

∗ From r, we have: ∂r
∂u

= , ∂r
∂v

=

∗ Therefore, ∂r
∂u

× ∂r
∂v

=

∣∣∣∣∣∣∣

i j k

cos v sin v 2u

−u sin v u cos v 0

∣∣∣∣∣∣∣
= −2u2 cos vi− 2u2 sin vj + uk

∗ Thus,
∫∫

S

F · ndA =
∫∫

S

F(r(u, v)) ·Ndudv

=
∫ π

−π

∫ 4

0

[
u cos v ( ) + u sin v ( ) + u2 ( )

]
dudv

=
∫ π

−π

∫ 4

0

[−u3
]
dudv

=
∫ π

−π

(−1
4
44)dv

=
∫ π

−π

(−64)dv

= −64(2π)

=
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2.2 Flux Integral / Surface Integral 2 SURFACE INTEGRALS

• Please be careful that the normal vector is directional, hence the surface integral can be ( )

� To calculate surface integral without regard to ( ), we have another type of surface
integral:

∫∫

S

G(r)dA =
∫∫

R

G(r(u, v))|N(u, v)|dudv

∫∫

S

G(r)dA =
∫∫

R′
G(x, y, f(x, y))

√
1 +

(
∂f

∂x

)2

+
(

∂f

∂y

)2

dxdy

which is used in the calculation of moment of inertia

� Example: Problem Set 9.6, Question 15
G = (1 + 9xz)3/2, S : r = [u, v, u3] where 0 ≤ u ≤ 1 and −2 ≤ v ≤ 2. Find

∫∫
S

G(r)dA

∗ We have,





x =
y =
z =

∗ Therefore,





dx = du

dy = dv

dz = 3u2du

∗ Thus,

∫∫

S

G(r)dA =
∫∫

R′
G(x, y, z)

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dxdy

=
∫ 2

−2

∫ 1

0

( )3/2 ( )1/2
dudv

=
∫ 2

−2

(∫ 1

0

(
1 + 9u4

)2
du

)
dv

=
∫ 2

−2

(∫ 1

0

(
1 + 18u4 + 81u8

)
du

)
dv

=
∫ 2

−2

[ ]1

0
dv

=
∫ 2

−2

68
5

dv

=
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