ERG2011A Tutorial 5: Two Big Theorems in Vector Analysis Prepared by Adrian Sai-wah TAM (swtam3@ie.cuhk.edu.hk) #### 11th October 2004 ## 1 Triple Integrals • We have learnt double integral and surface integral: $$\iint_{R} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dx dy = \oint_{C} (F_{1} dx + F_{2} dy)$$ $$\iint_{S} \mathbf{F} \cdot \mathbf{n} dA = \iint_{R} \mathbf{F} [\mathbf{r}(u, v)] \cdot \mathbf{N}(u, v) du dv$$ • Triple integral is the same concept: summing up the values over a ($$\iiint_{R} f(x, y, z) dx dy dz = \iiint_{R} f(x, y, z) dV$$ - Example: Density × Volume = Mass, therefore for an item with uneven density, $\iiint_R (\mathrm{density}) dV =$ - Calculating triple integral is the same as calculating double integral, i.e. transform it into (integral first - Example: Problem Set 9.7 Question 2 Find the total mass of a mass distribution of density σ in a region T in space, where $\sigma=e^{-x-y-z}$ and $T:0\leq x\leq 1-y,\,0\leq y\leq 1,\,0\leq z\leq 2$ - Density function: $f(x, y, z) = e^{-x-y-z}$ - Boundary of the region: T - Total mass = Integral = $$\iiint_{T} \sigma dV = \int_{(-)}^{(-)} \int_{(-)}^{(-)} \int_{(-)}^{(-)} e^{-x-y-z} dx dy dz$$ $$= \int_{0}^{2} \int_{0}^{1} [-e^{-x-y-z}]_{0}^{1-y} dy dz$$ $$= \int_{0}^{2} \int_{0}^{1} (-e^{-1-z} + e^{-y-z}) dy dz$$ $$= \int_{0}^{2} []_{0}^{1} dz$$ $$= \int_{0}^{2} (-2e^{-1-z} + e^{-z}) dz$$ $$= []_{0}^{2}$$ $$= 2e^{-3} - e^{-2} - 2e^{-1} + 1$$ # 2 Gauss' Divergence Theorem - GDT is analogous to Green's theorem in 3D - Triple integral of divergence can be transformed into the surface integral: - Variations of Divergence Theorem: 1. $$\iiint_{T} \nabla \cdot \mathbf{F} dV = \iint_{S} \mathbf{F} \cdot \mathbf{n} dA$$ 2. $$\iiint_{T} \left(\frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} + \frac{\partial F_{3}}{\partial z} \right) dx dy dz = \iint_{S} (F_{1} dy dz + F_{2} dz dx + F_{3} dx dy)$$ - Occationally, we use the GDT in the () way, i.e. given the integral at the right hand side and transform it into integral in left hand side. - Example: Problem Set 9.7 Question 14 Evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} dA$ by the divergence theorem for $\mathbf{F} = [e^x, e^y, e^z]$, S is the surface of the cube $|x| \leq 1$, $|y| \leq 1$, $|z| \leq 1$. - Surface are () flat planes that parallel to ()-plane, ()-plane and ()-plane. - Normal unit vectors are therefore, depend on which of the six planes, one of the following: - Instead of summing six integrals to make up the whole surface S, we use the GDT, hence: $$\iint_{S} \mathbf{F} \cdot \mathbf{n} dA = \iiint_{T} \nabla \cdot \mathbf{F} dV$$ $$= \int_{(-)}^{(-)} \int_{(-)}^{(-)} \int_{(-)}^{(-)} (e^{x} + e^{y} + e^{z}) dx dy dz$$ $$= \int_{-1}^{1} \int_{-1}^{1} [e^{x} + xe^{y} + xe^{z}]_{-1}^{1} dy dz$$ $$= \int_{-1}^{1} \int_{-1}^{1} (e - e^{-1} + e^{y} + e^{y} + e^{z} + e^{z}) dy dz$$ $$= \int_{-1}^{1} [(e - e^{-1})y + 2e^{y} + 2ye^{z}]_{-1}^{1} dz$$ $$= \int_{-1}^{1} (4e - 4e^{-1} + 4e^{z}) dz$$ $$= [(4e - 4e^{-1})z + 4e^{z}]_{-1}^{1}$$ $$= 12e - 12e^{-1}$$ • As you see from the triple integral's example, we may use triple integral to find the mass. But if the density is uniform unity, the mass is identical to the (• Example: Problem Set 9.8 Question 11 Show that a region T with boundary surface S has the volume: $$V = \iint_S x dy dz = \iint_S y dz dx = \iint_S z dx dy = \frac{1}{3} \iint_S (x dy dz + y dz dx + z dx dy)$$ - Because volume can be calculated by using the triple integral: $V = \iiint_{S^*} ($) dxdydz where S^* means the region bounded by the surface, by GDT, we have: $$V = \iiint_{S^{\star}} (1) dx dy dz$$ $$= \iiint_{S^{\star}} \frac{1}{3} (\nabla \cdot [x, y, z]) dx dy dz$$ $$= \frac{1}{3} \iiint_{S^{\star}} \nabla \cdot [x, y, z] dx dy dz$$ $$= \frac{1}{3} \iint_{S} (x dy dz + y dz dx + z dx dy)$$ - Alternatively, we also found that: $\nabla \cdot [x,\,0,\,0] = \dots,\,\nabla \cdot [0,\,y,\,0] = \dots$ and $\nabla \cdot [0,\,0,\,z] = \dots$. Repeating the above derivation can then show the result. - Hence you can see, find any vector function F that fit the problem, then you can use GDT. ### 3 Stroke's Theorem ### 3.1 Meaning of curl • Remember that, for a particle rotation along an axis, such that the locus of rotation has radius \mathbf{r} , rotating with () ω and instantaneous velocity \mathbf{v} is related by: $$\boldsymbol{\omega}\times\mathbf{r}=\mathbf{v}$$ - You can verify this: $\nabla \times \mathbf{v} = \frac{1}{2}\omega$ - Thus "curl" means angular velocity of a vector field - If "curl" is zero, it is (- Measuring the angular velocity can give a sense on the value of curl - Example: If v is the flow of water and I put a paddle wheel on the water, will it rotate? - 1. Draw a plane surface to contain the wheel - 2. Draw a closed loop on the surface - 3. Sum up all the parallel-to-surface component of vectors v along the curve (line integral) - 4. The summation is not zero, the wheel will rotate - But alternatively, we can also think of this: - 1. The surface is full of tiny gears - 2. There is a gear at the axis of the paddle wheel - 3. Gears may rotate clockwisely or counterclockwisely, fast or slow which can be represented by $(\nabla \times \mathbf{v}) \cdot \mathbf{n}$ where \mathbf{n} is the normal unit vector to the surface - 4. If the rotation of all the gears are balanced, i.e. $\sum (\nabla \times \mathbf{v}) \cdot \mathbf{n} = 0$, the gear representing the paddle wheel will not rotate #### 3.2 Stroke's theorem • Stroke's theorem: $$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dx dy = \oint_{C} \mathbf{F} \cdot d\mathbf{r}$$ - It is a generalization of Green's theorem to the 3D space - Example: Problem Set 9.9 Question 2 Integrate the surface integral $\iint_S (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} dA$ directly. Then check the result by integrating the corresponding line integral by Stoke's theorem: $\iint_S (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} dA = \oint_C \mathbf{F} \cdot \mathbf{r}'(s) ds$. Where: $\mathbf{F} = [y^2, -x^2, 0]$, S is the circular semidisk $x^2 + y^2 \le 4$, $y \ge 0$, z = 0. - Direct integration: $$\operatorname{curl} \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & -x^2 & 0 \end{vmatrix}$$ $$= ()\mathbf{k}$$ $$\mathbf{n} = \mathbf{k}$$ Hence: $$(\nabla \times \mathbf{F}) \cdot \mathbf{n} = -2x - 2y$$ $$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dA = \int_{0}^{2} \int_{-\sqrt{-}}^{\sqrt{-}} (-2x - 2y) dx dy$$ $$= \int_{0}^{2} \left[-x^{2} - 2xy \right]_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} dy$$ $$= \int_{0}^{2} \left(-4y\sqrt{4-y^{2}} \right) dy$$ $$= -2 \int_{0}^{4} \sqrt{4-u} du$$ $$= -2 \left[-\frac{(4-u)^{3/2}}{3/2} \right]_{0}^{4}$$ $$= -\frac{32}{3}$$ - Stroke's theorem: - * The perimeter of the circular semidisk in parametric form: $$x^2 + y^2 = 4$$ \Longrightarrow $$\begin{cases} x = \\ y = \end{cases}$$ with $0 \le t \le \pi$ * Line integral on curve part of the perimeter: $$\begin{split} \oint_C \mathbf{F} \cdot \mathbf{r}'(s) ds &= \int_0^{\pi} [y^2, -x^2, 0] \cdot [-2 \sin t, \, 2 \cos t, \, 0] dt \\ &= \int_0^{\pi} (-8 \sin^3 t - 8 \cos^3 t) dt \\ &= -2 \int_0^{\pi} (3 \sin t - \sin 3t + \cos 3t + 3 \cos t) dt \\ &= -2 \left[-3 \cos t + \frac{1}{3} \cos 3t + \frac{1}{3} \sin 3t + 3 \sin t \right]_0^{\pi} \\ &= -2 \left(3 - \frac{1}{3} + 3 - \frac{1}{3} \right) \\ &= -\frac{32}{3} \end{split}$$ * Line integral on the straight line part of the perimeter: $(-2,0) \rightarrow (2,0)$ $$\mathbf{r}(t) = t\mathbf{i}$$ with t from -2 to 2 Therefore: $$\mathbf{r}'(t) = [1,0,0]$$ $$\oint_C \mathbf{F} \cdot \mathbf{r}'(s) ds = \int_{-2}^2 [0, -t^2, 0] \cdot [1,0,0] dt$$ $$= \int_{-2}^2 (0) dt$$ $$= 0$$ * Which shows that the result from Stroke's theorem and from direct integration are the same.