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1 Previous knowledge

• Separable equations: (sometimes need substitution like u = y/x or v = ay + bx + k)

g(y)dy = f(x)dx

=⇒ y = G−1(F (x) + C)

• Exact di�erential equation:

M(x, y)dx + N(x, y)dy = 0 with
∂M(x, y)

∂y
=

∂N(x, y)
∂x

which solve by ∫
M(x, y)dx = f(x, y) + h(y)

∂

∂y
f(x, y) + h′(y) = N(x, y)

• Use of integrating factors:

F (x, y)M(x, y)dx + F (x, y)N(x, y)dy = 0

∂y (F (x, y)M(x, y)) = ∂x (F (x, y)N(x, y))

if F is single variable, it is:

F (x) = exp
∫

1
N

(
∂M

∂y
− ∂N

∂x

)
dx

F (y) = exp
∫

1
M

(
∂N

∂x
− ∂M

∂y

)
dy

• Linear di�erential equation:

y′ + p(x)y = r(x)

=⇒ y(x) = e−h

[∫
ehrdx + C

]
, where h =

∫
p(x)dx

If r(x) ≡ 0, y(x) = Ce−h

• Bernoulli equation: (solve by substitution of u = y1−a)

y′ + p(x)y = g(x)ya

=⇒ u′ + (1− a)p(x)u = (1− a)g(x)
1
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2 Second-order Linear Equation

• Standard form of L.D.E.:

y′′ + p(x)y′ + q(x)y = r(x)

If r(x) ≡ 0, we call it homogeneous, otherwise it is non-homogeneous. p(x), q(x), r(x) can be anything indepen-

dent of y.

• Be careful that usually, di�erential equation gives many solutions if we do not constrain it with initial values or

boundary values

• Properties:

1. If y1 and y2 are solutions of y′′ + p(x)y′ + q(x)y = 0, then c1y1 + c2y2 is also a solution ∀c1, c2 ∈ R

2. If y1/y2 is not a real number, they are called independent solutions.

Then the general solutions of y′′ + p(x)y′ + q(x)y = 0 is c1y1 + c2y2 ∀c1, c2 ∈ R.

3. If y3 is a particular solution of y′′ + p(x)y′ + q(x)y = r(x), then the general solution of it is c1y1 + c2y2 +
y3 ∀c1, c2 ∈ R. In other words, the general solution of homogeneous equation plus any solution of non-

homogeneous equation is the general solution of nonhomogeneous equation.

• A better way of determining independence of solutions is using the Wronski determinant:

W (y1, y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ = y1y
′
2 − y2y

′
1

W (y1, y2) 6= 0 for some values of x if and only if y1 and y2 are linearly independent

� Reference: Book section 2.7

• Solving a homogeneous equation is therefore a critical part for general solution

3 Homogeneous Linear Equation

3.1 General coe�cients

• Solving y′′ + p(x)y′ + q(x)y = 0 generally can be di�cult sometimes

� Hence we may �nd the �rst solution y1 by guessing and trials

• After y1 is found, we can �nd y2 using the method of reduction of order

1. Let y2 = u(x, y)y1

2. Finally we �nd that: u(x, y) =
∫

Udx, where U =
1
y2
1

exp
(
−

∫
p(x)dx

)
� Reference: Book page 69-70

• If we found an homogeneous non-linear equation, we can convert it into linear equation sometimes:

� F (x, y′, y′′) = 0 =⇒ substitute z = y′

� F (y, y′, y′′) = 0 =⇒ substitute z = y′, y′′ = z
dz

dy
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• Example: Problem Set 2.1 Question 8: xy′′ + y′ = 0

xy′′ + y′ = 0

x = −y′/y′′

1
x

= −y′′

y′∫
dx

x
= −

∫
d(y′)
y′

lnx = − ln(y′)

x =
1
y′

y′ =
1
x

y =
∫

dx

x

= lnx

Now we found y1 = ln x. Because the question is equivalent to y′′ + y′/x = 0, we can have

U =
1
y2
1

exp
(
−

∫
1
x

dx

)
=

1
(lnx)2

exp(− lnx)

=
1

x(lnx)2

u =
∫

1
x(lnx)2

dx

=
∫

1
(lnx)2

d(lnx)

= − 1
lnx

y2 = uy1 = −1

Hence the general solution for xy′′ + y′ = 0 is y = c1 lnx− c2 or y = c1 lnx + c3. Alternatively, by taking care of

the constants of integration, we can solve it in one-pass (just because we are lucky to have such simple equation):

xy′′ + y′ = 0

x = −y′/y′′

1
x

= −y′′

y′∫
dx

x
= −

∫
d(y′)
y′

lnx + C1 = − ln(y′)

eC1x =
1
y′

y′ = e−C1
1
x

y = e−C1

∫
dx

x

= e−C1 lnx + C2e
−C1

= c1 lnx + c2
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• Example: Problem Set 2.1 Question 10: y′′ + (1 + y−1)y′2 = 0

y′′ + (1 +
1
y
)y′2 = 0

z
dz

dy
+ (1 +

1
y
)z2 = 0

yz
dz

dy
+ (y + 1)z2 = 0

y
dz

dy
+ (y + 1)z = 0

y + 1
y

dy = −dz

z

y + ln y + C0 =
∫

(1 +
1
y
)dy = −

∫
dz

z
= − ln z

C1yey =
1
z

=
dx

dy

C1

∫
(yey)dy = x

C1(y − 1)ey + C2 = x

3.2 Constant coe�cients

• If the equation is: y′′ + ay′ + by = 0, then:

1. y = eλx is a solution

2. Where λ satis�es the quadratic equation λ2 + aλ + b = 0
we call this quadratic equation the characteristic equation

• If ∆ = a2 − 4b is:

1. ∆ > 0, then y = c1e
λ1x + c2e

λ2x ∀c1, c2 ∈ R

2. ∆ = 0, then y = (c1 + c2x)e−ax/2 ∀c1, c2 ∈ R, whereas λ = −a/2

3. ∆ < 0, then y = e−ax/2(c1 cos ωx + c2 sinωx) ∀c1, c2 ∈ R, whereas ω =
√

b− 1
4a2 and λ = − 1

2a± iω

• Example: Problem Set 2.2 Question 8: 10y′′ + 6y′ − 4y = 0

10y′′ + 6y′ − 4y = 0

y′′ +
3
5
y′ − 2

5
y = 0

∴ ∆ =
9
25
− 4

(
−2
5

)
=

17
25

> 0

Solving 10λ2 + 6λ− 4 = 0

Gives λ = −1 or
2
5

∴ y = c1e
−x + c2e

2x/5 ∀c1, c2 ∈ R

• Example: Problem Set 2.2 Question 9: y′′ + 2ky′ + k2y = 0

y′′ + 2ky + k2y = 0

=⇒ ∆ = (2k)2 − 4(k2) = 0

∴ y = (c1 + c2x)e−2kx/2



3.3 Partial constant coe�cients � Euler-Cauchy Equations 5

• Example: Problem Set 2.3 Question 10: y′′ − 2
√

2y′ + 2.5y = 0

y′′ − 2
√

2y′ + 2.5y = 0

=⇒ ∆ = 8− 4(2.5) < 0

∴ ω =

√
2.5− 1

4
(−2
√

2)2

=

√
2.5− 8

4
=
√

0.5

=
1
4

∴ y = e
√

2x
(
c1 cos

x

4
+ c2 sin

x

4

)
• Knowing these technique can help you solve any cases in damping motions (see book section 2.5)

3.3 Partial constant coe�cients � Euler-Cauchy Equations

• Euler-Cauchy equations have some of the coe�cients are constant:

x2y′′ + axy′ + by = 0

• A particular solution is given by:

1. y = xm

2. Where m satis�es the quadratic equation: m2 + (a− 1)m + b = 0

• With di�erent cases of the discriminants ∆ = (a− 1)2 − 4b,

1. ∆ > 0, then y = c1x
m1 + c2x

m2

2. ∆ = 0, then y = (c1 + c2 lnx)x(1−a)/2

3. ∆ < 0, then y = xµ [c1 cos(ν lnx) + c2 sin(ν lnx)], where m = µ± iν = (1− a)± i
(
4b− (a− 1)2

)
.

• Example: Problem Set 2.6 Question 8: (xD2 + D)y = 0

(xD2 + D)y = 0

xD2y + Dy = 0

xy′′ + y′ = 0

x2y′′ + xy′ + 0 · y = 0 =⇒ a = 1, b = 0

∴ ∆ = (1− 1)2 − 4(0) = 0

∴ y = (c1 + c2 lnx)x(1−1)/2

= c1 + c2 lnx

• Example: Problem Set 2.6 Question 10: (x2D2 + 0.7xD − 0.1)y = 0

(x2D2 + 0.7xD − 0.1)y = 0

x2y′′ + 0.7xy′ − 0.1y = 0

∴ ∆ = (0.7− 1)2 − 4(−0.1) > 0

and m = 0.5 or − 0.2

∴ y = c1x
0.5 + c2x

−0.2
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4 Non-Homogeneous Linear Equations

4.1 Constant coe�cients

• Solving non-homogeneous equations can be di�cult. So we look at a simplier case with constant coe�cients:

y′′ + ay′ + by = r(x)

• Rule of thumb: y = yh + yp

(General solution is the composition of homogeneous general solution and a particular solution)

• How to �nd yp? We use the method of undetermined coe�cients:

r(x) yp

keγx Ceγx

kxn (n = 0, 1, . . .) Polynomial:
n∑

i=0

Kix
i

k cos ωx or k sinωx K cos ωx + M sinωx

keαx cos ωx or keαx sinωx eαx(K cos ωx + M sinωx)

• Rules:

1. If r(x) is as shown in the above table, choose the corresponding yp

2. If yp chosen is already represented by yh, modify yp by multiplying x; or multiplying x2 if yh is obtained

with double root of λ

3. If r(x) is a sum of several functions above, choose ypto be the sum of corresponding functions accordingly

• Example: Problem Set 2.8 Question 8

Verify yp is a particular solution and �nd the general solution: (8D2 − 6D + 1)y = 6 coshx, yp = 1
5e−x + ex

� Veri�cation:

yp =
1
5
e−x + ex

y′p = −1
5
e−x + ex

y′′p =
1
5
e−x + ex

∴ 8y′′p − 6y′p + yp = 8(
1
5
e−x + ex)− 6(−1

5
e−x + ex) +

1
5
e−x + ex

=
8 + 6 + 1

5
e−x + (8− 6 + 1)ex

= 3e−x + 3ex

= 6 · e
−x + ex

2
= 6 coshx

� General solution:

8y′′ − 6y′ + y = 0

=⇒ m =
1
2
or

1
4

∴ yh = c1e
x/2 + c2e

x/4

∴ y = c1e
x/2 + c2e

x/4 +
1
5
e−x + ex ∀c1, c2 ∈ R
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• Example: Problem Set 2.9 Question 8: y′′ + 6y′ + 9y = 50e−x cos x

� Homogeneous solution, yh

y′′ + 6y′ + 9y = 0

=⇒ ∆ = 62 − 4 · 9 = 0

∴ yh = (c1 + c2x)e−3x ∀c1, c2 ∈ R

� Particular solution, yp

r(x) = 50e−x cos x

=⇒ yp = e−x(K cos x + M sinx)

∴ y′p = −e−x(K cos x + M sinx) + e−x(−K sinx + M cos x)

y′′p = e−x(K cos x + M sinx)− e−x(−K sinx + M cos x)

−e−x(−K sinx + M cos x) + e−x(−K cos x−M sinx)

= 2e−x(K sinx−M cos x)

∴ y′′p + 6y′p + 9yp = 2e−x(K sinx−M cos x)

−6e−x(K cos x + M sinx) + 6e−x(−K sinx + M cos x)

+9e−x(K cos x + M sinx)

= 3e−x(K cos x + M sinx)− 4e−x(K sinx−M cos x)

= (3K + 4M)e−x cos x + (3M − 4K)e−x sinx

hence, r(x) = 50e−x cos x =⇒

{
3K + 4M = 50
3M − 4K = 0

=⇒

{
K = 25

3

M = 25
4

∴ yp = e−x

(
25
3

cos x +
25
4

sinx

)
� General soluton: yh + yp

y = (c1 + c2x)e−3x + e−x

(
25
3

cos x +
25
4

sinx

)
∀c1, c2 ∈ R

4.2 Method of variation of parameters

• If the coe�cient is not constant, we solve it by the method of variation of parameters

� Caution: Complicated but almighty

• De�nitions:

� Given a homogeneous counterpart of the equation, setting c1 = 1, c2 = 0 and c1 = 0, c2 = 1 resepctively

will give out y1 and y2. We call them the basis

� Wronskian: W =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ = y1y
′
2 − y2y

′
1

� Particular solution:

yp = −y1

∫
y2r(x)

W
dx + y2

∫
y1r(x)

W
dx
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• Example: Problem Set 2.10 Question 8: (D2 + 6D + 9)y = 16e−3x/(x2 + 1)

� r(x) does not look like sum of things we know � cannot �nd yp by looking up the table

� Solve homogeneous counterpart: as in Problem Set 2.9 Question 8

yh = (c1 + c2x)e−3x ∀c1, c2 ∈ R

∴ y1 = e−3x

y2 = xe−3x

� Wronskian:

W =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ = y1y
′
2 − y2y

′
1

= e−3x ·
(
e−3x − 3xe−3x

)
− xe−3x ·

(
−3e−3x

)
= e−6x − 3xe−6x + 3xe−6x

= e−6x

� Particular solution:

yp = −y1

∫
y2r(x)

W
dx + y2

∫
y1r(x)

W
dx

= −e−3x

∫
xe−3x · 16e−3x/(x2 + 1)

e−6x
dx + xe−3x

∫
e−3x · 16e−3x/(x2 + 1)

e−6x
dx

= −e−3x

∫
16x

x2 + 1
dx + xe−3x

∫
16

x2 + 1
dx

= −16e−3x · 1
2

ln(x2 + 1) + 16xe−3x · tan−1(x)

= e−3x
(
16x tan−1 x− 8 ln(x2 + 1)

)
� General solution:

y = yh + yp

= (c1 + c2x)e−3x + e−3x
(
16x tan−1 x− 8 ln(x2 + 1)

)
= e−3x

(
c1 + c2x + 16x tan−1 x− 8 ln(x2 + 1)

)
• Example: Problem Set 2.10 Question 14: (x2D2 − 4xD + 6)y = 7x4 sinx

� Solving homogeneous version: (this is an Eular-Cauchy Equation)

x2y′′ − 4xy′ + 6y = 0

=⇒ ∆ = (−4− 1)2 − 4(6) = 25− 24 > 0

∴ m = 2 or 3

∴ yh = c1x
2 + c2x

3

� Wronskian:

W = y1y
′
2 − y2y

′
1

= x2 ·
(
3x2

)
− x · (2x)

= 3x4 − 2x4

= x4
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� Particular solution:

yp = −y1

∫
y2r(x)

W
dx + y2

∫
y1r(x)

W
dx

= −x2

∫
x3 · 7x4 sinx

x4
dx + x3

∫
x2 · 7x4 sinx

x4
dx

= −7x2

∫
x3 sinxdx + 7x3

∫
x2 sinxdx ← solve this using "integration by part"

= −7x2
(
(6x− x3) cos x + (3x2 − 6) sinx

)
+ 7x3

(
(2− x2) cos x + 2x sinx

)
= −7x2

(
(−x3 − x2 + 6x + 2) cos x + (3x2 + 2x− 6) sinx

)
� General solution:

y = yh + yp

= c1x
2 + c2x

3 − 7x2
(
(−x3 − x2 + 6x + 2) cos x + (3x2 + 2x− 6) sinx

)
� How to use integration by part to solve

∫
x2 sinxdx and

∫
x3 sinxdx? � in case you forgot about that∫

x2 sinxdx = −
∫

x2d(cos x)

= −x2 cos x− (−
∫

cos xd(x2)

= −x2 cos x + 2
∫

x cos xdx

= −x2 cos x + 2
∫

xd(sinx)

= −x2 cos x + 2x sinx− 2
∫

sinxdx

= −x2 cos x + 2x sinx + 2 cos x

∫
x3 sinxdx = −

∫
x3d(cos x)

= −x3 cos x− (−
∫

cos xd(x3)

= −x3 cos x + 3
∫

x2 cos xdx

= −x3 cos x + 3
∫

x2d(sinx)

= −x3 cos x + 3x2 sinx− 3
∫

sinxd(x2)

= −x3 cos x + 3x2 sinx− 6
∫

x sinxdx

= −x3 cos x + 3x2 sinx + 6
∫

xd(cos x)

= −x3 cos x + 3x2 sinx + 6x cos x− 6
∫

cos xdx

= −x3 cos x + 3x2 sinx + 6x cos x− 6 sinx
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5 Higher-order Linear Equations with Constant Coe�cients

• Standard form:
dny

dxn
+ pn−1(x)

dn−1y

dxn−1
+ · · ·+ p1(x)

dy

dx
+ p0(x)y = r(x)

• The Wronskian in Second-order linear di�erential equation is a 2× 2 matrix, but here, it is a n× n matrix:

W (y1, . . . , yn) =

∣∣∣∣∣∣∣∣∣∣
y1 y2 · · · yn

y′1 y′2 · · · y′n
...

...
...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣
• We don't deal with the cases that coe�cients of

dny

dxn
are not a real number in this course, i.e., we only handle

y(n) + pn−1y
(n−1) + · · ·+ p1y

′ + p0y = r(x)

5.1 Homogeneous Equations

• Similar to second-order cases, we have the characteristic equation: λn + pn−1λ
n−1 + · · ·+ p1λ + p0 = 0

� Roots of the characteristic equation are λ1, λ2, . . . , λn

� Order-n equations have n basis in any cases

• If all n roots are distinct, we have n basis: yk = eλkx, k = 1, . . . , n

• If some of the roots are repeated m times, we have m of the n basis in the form: yk = xkeλx, k = 0, . . . ,m− 1

• If some the roots are a pair of complex conjugates, λ = γ±iω, we have 2 of the n basis in the form: y1 = eγx cos ωx,

y2 = eγx sinωx

• If some the roots are repeated complex conjugates repeated m times, we have 2m of the n basis in the form

yk = xkeγx cos ωx, ym+k = xkeγx sinωx, k = 0, . . . ,m− 1

5.2 Non-Homogeneous Equations

• Follow the method as in second-order, except the general solution for homogeneous counterpart, yh, is consisting

of n components and n arbitrary constants

• y = yh + yp = c1y1 + c2y2 + · · ·+ cnyn + yp

• Easy, no magic!
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6 Summary of Second-order Linear D.E.

• Standard form of L.D.E.: y′′ + p(x)y′ + q(x)y = r(x)

• Properties of L.D.E.:

1. If y1 and y2 are solutions of the homo LDE and y1/y2 6=constant, they are independent solutions

2. If y1 and y2 are independent solutions of the homo LDE, then c1y1 + c2y2 is the general solution

3. If y3 is a particular solution of non-homo LDE, then the general solution of it is c1y1 + c2y2 + y3

• Wronski determinant:W (y1, y2) =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ = y1y
′
2 − y2y

′
1

� W (y1, y2) 6≡ 0 ⇐⇒ y1 and y2 are linearly independent

• If y1 is one solution of a homo LDE, then y2 = y1

∫
1
y2
1

e−
R

p(x)dxdx (method of reduction of order)

• Substitution for conversion to homo LDE:

� F (x, y′, y′′) = 0 =⇒ substitute z = y′

� F (y, y′, y′′) = 0 =⇒ substitute z = y′, y′′ = z
dz

dy

• Special homo LDE:

Constant coe�cient Eular-Cauchy equation

y′′ + ay′ + by = 0 x2y′′ + axy′ + by = 0

Char. eqn λ2 + aλ + b = 0 m2 + (a− 1)m + b = 0

∆ a2 − 4b (a− 1)2 − 4b

∆ > 0 y = c1e
λ1x + c2e

λ2x y = c1x
m1 + c2x

m2

∆ = 0 y = (c1 + c2x)e−ax/2 y = (c1 + c2 lnx)x(1−a)/2

∆ < 0 λ = − 1
2a± iω = − 1

2a± i
√

b− 1
4a2

y = e−ax/2(c1 cos ωx + c2 sinωx)
m = µ± iν = (1− a)± i

(
4b− (a− 1)2

)
y = xµ [c1 cos(ν lnx) + c2 sin(ν lnx)]

• Non-homo L.D.E.: Guess yp and then solve for the unknown coe�cients:

1. If r(x) is as shown in the table, choose the corresponding yp

2. If yp chosen is already represented by yh, modify yp by multiplying x; or multiplying x2 if yh is obtained

with double root of λ

3. If r(x) is a sum of several functions above, choose ypto be the sum of corresponding functions accordingly

r(x) yp

keγx Ceγx

kxn (n = 0, 1, . . .) Polynomial:
n∑

i=0

Kix
i

k cos ωx or k sinωx K cos ωx + M sinωx

keαx cos ωx or keαx sinωx eαx(K cos ωx + M sinωx)

• Method of variation of parameters: for use when r(x) is not in the above table

1. Find homo LDE general solution: yh = c1y1 + c2y2

2. Find Wronskian: W = y1y
′
2 − y2y

′
1

3. Find particular solution: yp = −y1

∫
y2r(x)

W
dx + y2

∫
y1r(x)

W
dx

4. General solution: y = yh + yp


