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1 Step Functions

1.1 Definition
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Figure 1: Unit step function
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Step function is: u(t) = {

In mathematica, you can use UnitStep[t] to represent this.

u(t — a) means it turns from 0 to 1 when ¢ =

For a given function f(¢), the multiplication of u(¢ — a) means we turn on the function at time ¢ =

Example: f(t) = sint; u(t — 1) f(t) :
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Figure 2: y = u(x — 7)sinz
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e Essentially, u(t — a)f(t) = { 0t
<a



1.2 Laplace transform

1.2 Laplace transform

e Laplace transform:

L{f(t — ault — a)}
£He R (s)}

e YF(s)
fit—a)u(t —a)

e For just u(t — a), we can assume f(¢) = 1 and obtains

—as

L{u(t —a)} = & -
e Example: Problem Set 5.3 Question 7, L{4u(t — 7) cost}
L{4u(t —m)cost} = L{ 4u(t— ) cos( )}

= —4L{u(t —m)cos(t —m)}
= —4e ™ L{cos(t)}
= —de™ . (—)
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e Example: Problem Set 5.3 Question 18, £=1{e™27/(s? + 2s + 2}
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= wu(t—2m)- et sinﬂt_}t_%r
= u(t—2m)e 2 sin(t — 27)

= u(t—2m)e” 2 gint



2 Impulse function

2.1

2.2

Definition
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Figure 3: Impulse function

1/ 0<t<r~
0 otherwise
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Impulse function is: §(¢) = lim {
o0
By definition, / o(t)ydt =1
—00
It is also called the “Dirac Delta Function” or “Unit Impulse Function”
In mathematica, you can use DiracDelta[t] to represent this
Graphically, we usually write an up arrow at ¢ = 0 to represent this

Physically, an impulse means to give a short hit as an input at t =0

In §(¢t — a), it means the hit is at t =

Laplace Transform

Laplace transform:

L{(t—a)} = e
LHe ™} = §(t—a)

Please note that:

t
— By definition, / o(T)dr = u(t)

t
— By convolution property of Laplace transform: / f(O)ot—7)dr =ult—7)f(t—7)
0

* You can check this by simple reasoning and sketching!
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3 Fourier Series

e Completely different thing!

3.1 Periodicity with period 27

Many things are periodic

In high school physics, we learnt about superposition of two sine waves with different frequency causes beat

Can I give you a superposition of some sine waves and you tell me how does it constitutes?

— Fourier series prepresentation of a periodic function

— Period 27 means: f(z+ ) =

Finding Fourier coefficients:

Claim: Every periodic function is a superposition of (sometimes infinitely many) sine and cosine waves!

o0

Fourier series of a function with period 27: f(z) = ap + Z(ak cos kx + by sin kx)

k=1

f(z) for all x

ap = i/7r f(z)dz

ap = 7/ f(x) cos kxdx
7T

3.2 Periodicity with any period

e Assume g(z) is a function with period 27, then the function f(z) = g(27z/p) has period p:

g(z + 2m)
f(z+p)
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e Fourier series of a function with period p = 2L:
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3.2 Periodicity with any period

e Example: Problem Set 10.3 Question 4
Find the Fourier Series of the periodic

function f(z) =|z|] (-2<x<2), p=2L=4

= k k
fl@z) = a0+;<akcos;x+bksin;x>
1/L
ag = — f(z
L/ g
1 2
= f/ |x|dx
i),
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= f/( x)dr + — /xda:
4 Jo
1 2
= = - d
4/0 4/0 zda
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= = T cos —xdr + — T cos —xdx
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1 2 k 1 2
= 5/0 (—x)cosg(—x)d(—x)—i—i/o xcos%xda?
1 2 1 /2
= f/ xcos—wmdx—i—f/ xcos—ﬂxdac
2 o 2 2 Jo 2
2
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0 2
B -
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3.3 Even and Odd Functions

3.3 Even and Odd Functions

e Some functions are called even functions if they satisfy: f(—z) = f(z)
e Some functions are called odd functions if they satisfy: f(—z) = —f(x)

e Properties of even/odd functions:

1. Sum of even functions is even
2. Sum of two odd functions is even
3. Product of two even/odd functions is even

4. Product of an even function and an odd function is odd

L L
5. /_L foven(x)dx = 2/0 Jeven(x)dx

L
6. /_L fodd(l’)d.’b =0

e In Fourier series representation, all odd functions have ay =0

o0

foaa(z) = Z (bk sin i?m)

k=1

e In Fourier series representation, all even functions have b, = 0

oo
km
foven(z) = ao+ Z (ak CcOSs Kx)
k=1
e Further properties of Fourier series representation:

— f(z) = fi(z) + fa(z) then the Fourier series is the sum of every corresponding coefficients

— c¢f(x) has the Fourier series with each Fourier coefficients of f(x) multiplied by ¢



