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Pure Math – Sequence & Series

Sequences

Definitions:

· Sequence is a function mapping from ℕ to ℝ
· x : ℕ ( ℝ
· Graph of sequence: The set of pts of a sequence

· {(1, x(1)), (2, x(2)), (3, x(3)), ...}  or

· {x(1), x(2), x(3), ...}  or

· {x1, x2, x3, ...}  or  {xn : n(ℕ}

· Graph of a sequence is discontinuous (domain = ℕ) but function is continuous (domain = ℝ)

Example of Sequences:

· Define by function: an = n(n–1)  n(ℕ
· Define by induction: a1=1; a2=1; an=an–2+an–1  (k(ℕ, k(3)

Define by words: {xn: xn is (2 round off to n decimal places}
  ( {1.4, 1.41, 1.414, 1.4142, 1.14121, ...}

· {x1, x2, x3, ...} ( 
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Limit of Sequences:

· Let {xn} be a sequence and L(ℝ.  If ((0)((n0(ℕ)(nn0 ( | xn – L |)
  then L is called the limit of the sequence
Denoted by
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  or simply lim xn = L
· The sequence {xn} is called a convergent sequence

· Nhd of L w/radius : N(L) = {xn: |xn – L|} = (L–, L+)

· Divergent sequence: ((00)((n(ℕ)((n0(ℕ, n n0 ( | xn–L |()

· Properties of limit:

· lim (xn ( yn) = lim xn ( lim yn
· lim (xn yn) = (lim xn)(lim yn)

· 
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 as long as the notation is defined

· lim (kxn) = klim xn

(k(ℝ
· lim (xn)m = (lim xn)m

(m(ℕ
· 
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(m(ℕ
· lim xn+m = lim xn


(m(ℕ
· If lim xn=a and f(x) is an elementary function which f(a) is defined, then lim f(xn) = f(lim xn)

· Predefined limits:

· 
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where a|1

· 
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where a1

· 
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where a  0

· 
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where k(ℕ
· 
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where k(ℕ
Bounded Sequence:

· {xn} is called a bdd sequence iff (M(ℝ s.t. |xn|(M (n(ℕ (or (n(n0)

{xn} is said to be bdd above iff (M(ℝ s.t. xn(M (n(ℕ (or (n(n0)

· M is called an upper bound

· {xn} is said to be bdd below iff (M(ℝ s.t. xn(M (n(ℕ (or (n(n0)

· M is called an lower bound

The least upper bound (l.u.b.) is called the supremum, sup{xn}
The greatest lower bound (g.l.b.) is called the infimum, inf{xn}

· {xn} is said to be monotonic increasing iff xn ( xn+1  (n(ℕ
{xn} is said to be monotonic decreasing iff xn ( xn+1  (n(ℕ
· If the equality is excluded, it is called strictly monotonic

If a monotonic increasing sequence is bdd above, it is convergent

· If a monotonic decreasing sequence is bdd below, it is convergent

· The Bounded Convergent Theorem
· If the monotony occurs only when n(n0, the sequence is also convergent

· Properties of bdd sequence:

· If {xn} is a convergent sequence, it is bounded

· If {xn} is bdd and lim yn=0, lim xnyn=0

· If lim xn(0 and lim yn=(, lim xnyn=(; 
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Properties of Limit of Sequences:

xn  yn (nn0 ( lim xn ( lim yn
lim xn  lim yn ( xn  yn (nn0
· lim xn  a ( xn  a (nn0; lim xn  a ( xn  a (nn0
xn  a (nn0 ( lim xn ( a; xn  a (nn0 ( lim xn ( a
· The limit of a convergent sequence is not affected by:

Adding finite no. of terms to the sequence

· Deleting finite no. of terms to the sequence

· Altering finite no. of terms to the sequence

· Divergence of a sequence is not affected by:

· Adding finite no. of terms to the sequence

· Deleting finite no. of terms to the sequence

· Altering finite no. of terms to the sequence

Sandwich principle:
For some sequences {xn}, {yn}, {zn}.  If {xn} and {zn} are convergent sequences and xn ( yn ( zn or xn  yn  zn for all sufficient large n,
· lim xn ( lim yn ( lim zn  if the limits exist

· If lim xn = lim zn = ((ℝ, {yn} is also convergent and lim yn = (
· Rapidity of increase of functions: ln x < x < xk < ax < [x]!

k1, a1

· 
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Difference equation: An equation connecting / related successive terms of a sequence

Subsequence:

· Let {xn} be a sequence. 
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is a subsequence of {xn} iff:

· nk ( k  (k(ℕ
· (, (ℕ
 ( (n ( n
A sequence converges to a limit L iff any of its subsequence also converges to the limit L
· Let {xn} be a sequence, lim xn = L  iff  lim x2n–1 = lim x2n = L
· Limit of the sequence = Limit of even-numbered term = Limit of odd-numbered term

Let {xn} be a sequence, {xn} itself is a divergent sequence if:

· There is a subsequence of {xn} is divergent, or
· There is two convergent subsequence of {xn} that converge to different limits

· Oscillating function has no limit even it is bounded

Series

Finite Series:

· Series is the inductive sum of terms of a sequence

· Series is individual terms connected by the ‘+’ sign

· Sequence:
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;  Series: x1+x2+x3+...+xN =
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· If N is a finite natural number, the series is called a finite series
· If the series is the sum of infinite no. of terms, 
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, it is an infinite series
· A series may also start summing from xm other than x1, i.e.
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· Partial sum is the real value computed from the series’ summation

· Some common series:

· Arithmetic series: a + (a+d) + (a+2d) + ( + [a+(n–1)d] = 
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· Geometric series: a + aR + aR2 + ( + aRn–1 =
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· Arithmetic-Geometric series: a + (a+d)R + ( + [a+(n–1)d]Rn-1 =
[image: image25.wmf]å

=

+

-

+

n

k

k

R

d

k

a

1

1

]

)

1

(

[


· Harmonic series: 
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· Power series: c0 + c1x + c2x2 + ( + cnxn = 
[image: image27.wmf]å

=

n

k

k

k

x

c

0


· The sum 
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is not a series as the terms varies as n varies (xn is undefined)

· Method of difference:

· 
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· 
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· 
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Convergence of Infinite Series:

· The sum S of the infinite series is found by the limit of partial sums: 
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· Let 
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; partial sum: {Sn}; then S = lim Sn
· If the limit S exists, the series is called a convergent series
If the limit S does not exist, the series is a divergent series
· The sum of divergent series will be +(, –(, or oscillating

Properties of convergent series: (an=S, bn=T)

· (an(bn) = S(T
· can) = cS
· an ( bn (n(ℕ  (  S ( T
· If a finite no. of terms, which the sum is P, are removed from an, resulting series is still convergent and the sum is S–P
If a finite no. of terms, which the sum is P, are added to an, resulting series is still convergent and the sum is S+P
Tests for convergence & divergence:

· A series 
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· an ( bn  (n(ℕ, if 
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· an ( bn  (n(ℕ, if 
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· Let 
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· If 
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· Let 
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be a series, where an can be expressed as f(n) where f(x) is a continuous function that:

(a)  f(x)  0  (x(1

(b)  f(x) is decreasing when x(1

If 
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Calculation of the Sum of Series:

· Let 
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· By substituting 
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� The test is known as Leibniz’s test or Alternating series test
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