
1 Bond & Time Value of Money
Compound interest, and continuous compounding:

𝐹𝑉 = 𝑃𝑉 (1 +
𝑟
𝑛

)
𝑛𝑡

𝑃𝑉 = 𝐹𝑉 (1 +
𝑟
𝑛

)
−𝑛𝑡

𝑃𝑡 = 𝑃0𝑒𝑟𝑡 𝑃𝑜 = 𝑃𝑡𝑒−𝑟𝑡

Cash flow, with interest rate 𝑟𝑖 at period 𝑖:

𝑃𝑉 =
𝑛

∑
𝑖=1

𝐶𝐹𝑖
(1 + 𝑟𝑖)𝑖

Excel calculates for constant 𝐶𝐹 and 𝑟 with =PV(r,n,CF).
Perpetual bond: Fixed payment 𝐶𝐹 each period forever, and assumed 𝑟
constant, 𝑛 → ∞:

𝑃𝑉 =
∞
∑
𝑖=1

𝐶𝐹
(1 + 𝑟)𝑖 =

𝐶𝐹/(1 + 𝑟)
1 − 1

1+𝑟
=

𝐶𝐹
𝑟

Rate 𝑟 in perpetual bond is the hurdle rate of a corp such that it is the
min IRR required for any investment.
Gordon growth model: payment grow at a constant rate 𝐶𝐹𝑖 = 𝐶𝐹𝑖−1(1+
𝑔). For finite term:

𝑃𝑉 =
𝑛

∑
𝑖=1

𝐶𝐹0(1 + 𝑔)𝑖

(1 + 𝑟𝑖)𝑖 = 𝐶𝐹0

𝑛
∑
𝑖=1

(1 + 𝑔)𝑛

(1 + 𝑟)𝑛

As 𝑛 → ∞, 𝑃𝑉 = 𝐶𝐹0/(𝑟 − 𝑔)

Bond pricing
Bond with coupon 𝐶, constant discount rate 𝑦 and repaid $1 after 𝑛
terms,

𝑃𝑉 =
𝑛

∑
𝑖=1

𝐶
(1 + 𝑦)𝑖 +

1
(1 + 𝑦)𝑛 =

𝐶
𝑦

(1 −
1

(1 + 𝑦)𝑛 ) +
1

(1 + 𝑦)𝑛 .

If PV is the price, 𝑦 here is the yield for the bond. Price sensitivity to
the yield:

𝜕𝑃
𝜕𝑦 =

𝜕
𝜕𝑦

⎛⎜
⎝

𝑛
∑
𝑖=1

𝐶
(1 + 𝑦)𝑖 +

𝑃𝑎𝑟
(1 + 𝑦)𝑛

⎞⎟
⎠

=
𝑛

∑
𝑖=1

−𝑖𝐶
(1 + 𝑦)𝑖+1 +

−𝑛𝑃𝑎𝑟
(1 + 𝑦)𝑛+1

1
𝑃

𝜕𝑃
𝜕𝑦 = −

1
1 + 𝑦

1
𝑃

⎛⎜
⎝

𝑛
∑
𝑖=1

𝑖𝐶
(1 + 𝑦)𝑖 +

𝑛𝑃𝑎𝑟
(1 + 𝑦)𝑛

⎞⎟
⎠

which we define the Macauley duration and modified duration as

𝐷Mac =
1
𝑃

⎛⎜
⎝

𝑛
∑
𝑖=1

𝑖𝐶
(1 + 𝑦)𝑖 +

𝑛𝑃𝑎𝑟
(1 + 𝑦)𝑛

⎞⎟
⎠

𝐷mod =
1

1 + 𝑦 𝐷Mac

respectively. Then px sensitivity 1
𝑃

𝜕𝑃
𝜕𝑦 = −𝐷mod. Given 𝐷mod, a bond

at 𝑃 will see price change Δ𝑃 at yield change Δ𝑦 by Δ𝑃 = −𝑃Δ𝑦𝐷mod.
A zero-coupon bond will have 𝑃 = 𝑃𝑎𝑟/(1 + 𝑦)𝑛 and

𝐷Mac =
1
𝑃

𝑛𝑃𝑎𝑟
(1 + 𝑦)𝑛 =

1
𝑃 𝑛𝑃 = 𝑛,

which is most sensitive to Δ𝑦. Taylor expansion of price function

𝑃(𝑦 + Δ𝑦) = 𝑃(𝑦) +
𝜕𝑃
𝜕𝑦 Δ𝑦 +

1
2

𝜕2𝑃
𝜕𝑦2 Δ𝑦2

where the second order term accounts for the convexity (as yield in-
creases, 𝑃 is less sensitive to Δ𝑦). Define dollar convexity

𝐶 =
𝜕2𝑃
𝜕𝑦2 =

𝑛
∑
𝑖=1

𝑖(𝑖 + 1)𝐶
(1 + 𝑦)𝑖+2 +

𝑛(𝑛 + 1)𝑃𝑎𝑟
(1 + 𝑦)𝑛+2 ,

then price change is

Δ𝑃 = −𝑃Δ𝑦𝐷mod +
1
2 𝐶Δ𝑦2 + 𝑜(𝑦3).

Numerical approximation of duration and convexity:

𝐷mod = −
𝑃(𝑦 + Δ𝑦) − 𝑃(𝑦 − Δ𝑦)

2𝑃Δ𝑦

𝐶 =
𝑃(𝑦 + Δ𝑦) − 2𝑃(𝑦) + 𝑃(𝑦 − Δ𝑦)

Δ𝑦2

Weakness of duration: It only measure interest rate risk, not yield
curve risk (i.e., if yield curve changes shape, not only shifted).

2 Probability & Statistics
Correlation between two RVs 𝑋 and 𝑌:

𝑟𝑋,𝑌 =
∑𝑛

𝑖=1(𝑋 − �̄�)(𝑌 − �̄�)
(𝑛 − 1)𝜎𝑋𝜎𝑌

∈ [−1, 1]

which 𝜌𝑋,𝑌 = 𝑟2
𝑋,𝑌 ∈ [0, 1] is the coefficient of determination.

Sum of RVs: Let 𝑍 = 𝑤1𝑋 + 𝑤2𝑌, and Cov(𝑋, 𝑌) = 𝜌𝑋,𝑌𝜎𝑋𝜎𝑌 be the
covariance,

E(𝑍) = 𝑤1�̄� + 𝑤2�̄�
Var(𝑍) = 𝑤2

1𝜎2
𝑋 + 𝑤2

2𝜎2
𝑌 + 2𝑤1𝑤2 Cov(𝑋, 𝑌)

Lognormal distribution: Common to model stock price
Wiener process: 𝑊𝑡 + 𝑢 − 𝑊𝑡 ∼ 𝑁(0, 𝑢), i.e., standard deviation scales
with sq root of time

Regression
Linear regression: Find line 𝑦 = 𝑎 + 𝑏𝑥 that is best linear unbiased
estimator (BLUE) that relates 𝑥𝑖 to 𝑦𝑖. Error of regresion: SSR (sum
of sq error due to regression), SSE (sum of sq errors), SST (sum of sq
total error, equiv to sample variance times sample size):

𝑆𝑆𝑅 = ∑
𝑖

(𝑦(𝑥𝑖) − ̄𝑦)2 with ̄𝑦 =
1
𝑛

∑
𝑖

𝑦𝑖

𝑆𝑆𝑇 = ∑
𝑖

(𝑦𝑖 − ̄𝑦)2

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝑅
𝑅2 = 𝑆𝑆𝑅/𝑆𝑆𝑇 ∈ [0, 1]

𝑅2 measures the goodness of fit, i.e., percentage of variation of the
data explained by the regression equation.
Test for significance of regression coefficients 𝑎 and 𝑏: by 𝑡-statistics.
Simple linear regression on 𝑛 samples, the degree of freedom is 𝑛 −
2 for two coefficients are derived from them. With desired level of
significance 𝛼, a corresponding 𝑡 value (𝑡𝛼) is set. We test if |𝑡′| > 𝑡𝛼 to
determine the regression coefficient is significant, i.e., the data is not
random. Which (usually ̃𝑎 = 0 as null hypothesis)

𝑡′ =
∣∣∣∣∣

𝑟𝑋,𝑌√𝑛 − 2

√1 − 𝑟2
𝑋,𝑌

∣∣∣∣∣
for sig of correlation coeff 𝑟𝑋,𝑌

𝑡′ = ∣
𝑎 − ̃𝑎

𝑠𝑎
∣ for sig of regression coeff 𝑎 (or similarly 𝑏)

Time series
Regression on time series: 𝐴𝑅(𝑛), auto-regression of lag 𝑛 periods.
For 𝐴𝑅(1), the linear model is 𝑌𝑡 = 𝑎 + 𝑏𝑌𝑡−1, i.e. value at 𝑡 depends
only on value at 𝑡 − 1.
Random walk: 𝐴𝑅(1) model of 𝑌𝑡 = 𝑎 + 𝑏𝑌𝑡−1 + 𝜖 where error term
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∼ 𝑁(0, 𝜎2) is independent of any 𝑌𝜏 . Here 𝑏 is the drift term,

• if 𝑏 ∈ [0, 1), the series is mean-reversion (pull 𝑌𝑡 back to the mean).
Mean of 𝑌𝑡 is the solution to 𝜇 = 𝑎 + 𝑏𝜇 or 𝜇 = 𝑎/(1 + 𝑏)

• if 𝑏 ∈ (−1, 0], the series is oscillating, with the same mean as
above

• if |𝑏| = 1, the series is a Weiner process
• if |𝑏| > 1, the series is explosive
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3 Derivatives
Forward contract
Risk-free rate 𝑟, spot price 𝑆𝑡, price of forward contract in no-arbitrage
argument:

𝐹𝑡,𝑇 = 𝑆𝑡𝑒𝑟(𝑇−𝑡)

Forward price should equal to future value of spot price. The price
of forward contract can be extended to include the cost of carry 𝑠, i.e.,
all storage, insurance, etc.: 𝐹𝑡,𝑇 = (𝑆𝑡 + 𝑠)𝑒𝑟(𝑇−𝑡).
Forward contract: No up-front cost, settled at maturity, but no clear-
ing house to regulate or monitor, with exposure to counterparty
credit risk.

Future contract
Standardized contract, with clearing house. Counterparties deposit
an initial margin, with position marked to market every day and in-
vestors shall keep balance above the maintenance margin.
Spot-future parity (no-arbitrage argument for pricing):

𝐹𝑡,𝑇 = (𝑆𝑡 + 𝑠)𝑒𝑟(𝑇−𝑡)

extension to account for discrete dividents 𝛿𝑖 paid at times 𝑡𝑖:

𝐹𝑡,𝑇 = (𝑆𝑡 + 𝑠)𝑒𝑟(𝑇−𝑡) −
𝑛

∑
𝑖=1

𝛿𝑖𝑒𝑟(𝑇−𝑡𝑖)

or with continuous dividend 𝛿:

𝐹𝑡,𝑇 = (𝑆𝑡 + 𝑠)𝑒(𝑟−𝛿)(𝑇−𝑡)

Example: interest rate parity. Currency exchange rate 𝐸𝑡 at spot and
forward rate 𝐹𝑡,𝑇 at 𝑇. Domestic interest rate 𝑟𝐷 and foreign interest
rate 𝑟𝐹. No arbitrage argument says that if one country’s interest rate
is higher than the other, it is balanced by the exchange rate. Then
forward rate is

𝐹𝑡,𝑇 = 𝐸𝑡𝑒(𝑟𝐷−𝑟𝐹)(𝑇−𝑡).

Example: implied interest rate. Given future 𝐹𝑡,𝑇 and spot 𝑆𝑡 are
known, we can invert for the interest rate

𝑟 =
1

𝑇 − 𝑡 ln (
𝐹𝑡,𝑇

𝑆𝑡 + 𝑠
) .

Options
Options are traded for hedging, for speculation, and by arbitrageurs.
Put-call parity: Hedge a stock by long a put option and short a call
option with prices 𝑆, 𝑝, 𝑐 respectively, both options with strike price 𝐾
and expiry 𝑡. Stock and put option are financed by borrowed money
𝐾𝑒−𝑟𝑡 at rate 𝑟 and the sale of call option:

𝑆 + 𝑝 − 𝑐 = 𝐾𝑒−𝑟𝑡

pic
at
p.100

Put-call parity can be solved to create synthetic position:
• put position = borrowing money, long call and short stock

𝑝 = 𝐾𝑒−𝑟𝑡 + 𝑐 − 𝑆
• short on stock = lending money, long put and short call

−𝑆 = 𝑝 − 𝑐 − 𝐾𝑒−𝑟𝑡

• long on stock = borrow money, short put and long call
𝑆 = 𝑐 − 𝑝 + 𝐾𝑒−𝑟𝑡

Combining options:
• Naked call: selling call without owning the asset, payoff to the

writer is 𝑐 − max(𝑆 − 𝐾, 0)
• Naked put: similarly, payoff to the writer is 𝑝 − max(𝐾 − 𝑆, 0)
• Straddle: buy both put and a call with same 𝐾 and expiry, payoff

function: max(𝐾 − 𝑆, 0) + max(𝑆 − 𝐾, 0) − 𝑐 − 𝑝, will lose money
(part of premium) if asset price close to 𝐾 at expiry

• Naked straddle: sell both put and call with same 𝐾 and expiry,
payoff is reverse of straddle

• Calendar spread: buy call at strike 𝐾 with expiry 𝑡1 and sell call
at 𝐾 with expirt 𝑡2, use the proceed from sales to finance pur-
chase

• Bull spread: Long a call with low strike 𝐾1 and short a call with
higher strike 𝐾2 at the same expiry, use the proceed from sale to
finance purchase and produce a profit if stock price rises.

Nick Leeson & Barings Bank: Naked straddle on Nikkei 225 at end
of 1994.

Option Valuation
Wiener process for variable 𝑋𝑡: 𝑋𝑡 = 𝜇𝑡 + 𝜎𝐵𝑡 with 𝜇 and 𝜎2 the drift
rate and variance rate respectively, 𝐵𝑡 ∼ 𝑁(0, 𝑡).
Ito’s lemma: for 𝑓 (𝑡, 𝑋𝑡), which 𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡:

𝑑𝑓 =
𝜕𝑓
𝜕𝑡 𝑑𝑡 +

𝜕𝑓
𝜕𝑥 𝑑𝑥 +

1
2

𝜕2𝑓
𝜕𝑥2 𝑑𝑥2 + 𝑂(𝑑𝑡2)

=
𝜕𝑓
𝜕𝑡 𝑑𝑡 +

𝜕𝑓
𝜕𝑥 (𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡) +

1
2

𝜕2𝑓
𝜕𝑥2 (𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡)2 + 𝑂(𝑑𝑡2)

=
𝜕𝑓
𝜕𝑡 𝑑𝑡 +

𝜕𝑓
𝜕𝑥 𝜇𝑡𝑑𝑡 +

𝜕𝑓
𝜕𝑥 𝜎𝑡𝑑𝐵𝑡 +

1
2

𝜕2𝑓
𝜕𝑥2 𝜎2

𝑡 𝑑𝑡 + 𝑂(𝑑𝑡2)

= ⎛⎜
⎝

𝜕𝑓
𝜕𝑡 + 𝜇𝑡

𝜕𝑓
𝜕𝑥 +

𝜎2
𝑡
2

𝜕2𝑓
𝜕𝑥2

⎞⎟
⎠

𝑑𝑡 + 𝜎𝑡
𝜕𝑓
𝜕𝑥 𝑑𝐵𝑡.

Asset price model: 𝑑𝑆/𝑆 = 𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡 with 𝑑𝐵2
𝑡 ≈ 𝑑𝑡,

𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑡

𝑑𝑆2 = (𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑡)2

= 𝜇2𝑆2𝑑𝑡2 + 2𝜇𝜎𝑆2𝑑𝐵𝑡𝑑𝑡 + 𝜎2𝑆2𝑑𝐵2
𝑡

≈ 𝜎2𝑆2𝑑𝑡

Assume option price 𝑉 be a function of 𝑆 and 𝑡, using Ito’s lemma,

𝑑𝑉 = ⎛⎜
⎝

𝜇𝑆
𝜕𝑉
𝜕𝑆 +

1
2 𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 +
𝜕𝑉
𝜕𝑡

⎞⎟
⎠

𝑑𝑡 + 𝜎𝑆
𝜕𝑉
𝜕𝑆 𝑑𝐵𝑡

Construct a portfolio Π with option 𝑉 and asset 𝑆 of quantity −Δ,

Π = 𝑉 − Δ𝑆
𝑑Π = 𝑑𝑉 − Δ𝑑𝑆 = 𝑑𝑉 − Δ(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑡)

= ⎛⎜
⎝

𝜇𝑆
𝜕𝑉
𝜕𝑆 +

1
2 𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 +
𝜕𝑉
𝜕𝑡 − Δ𝜇𝑆⎞⎟

⎠
𝑑𝑡 + 𝜎𝑆 (

𝜕𝑉
𝜕𝑆 − Δ) 𝑑𝐵𝑡

We set

Δ =
𝜕𝑉
𝜕𝑆

(“delta”, change in value of option for a change in value of the un-
derlying asset) and 𝑑Π = Π𝑟𝑑𝑡 to make the portfolio deterministic,
and in a no-arbitrage argument with risk-free rate 𝑟, then we have the
Black-Scholes model in p.d.e.

𝑑Π = ⎛⎜
⎝

𝜇𝑆
𝜕𝑉
𝜕𝑆 +

1
2 𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 +
𝜕𝑉
𝜕𝑡 − Δ𝜇𝑆⎞⎟

⎠
𝑑𝑡 = (𝑉 −

𝜕𝑉
𝜕𝑆 𝑆) 𝑟𝑑𝑡

∴ 𝜇𝑆
𝜕𝑉
𝜕𝑆 +

1
2 𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 +
𝜕𝑉
𝜕𝑡 −

𝜕𝑉
𝜕𝑆 𝜇𝑆 = 𝑉𝑟 −

𝜕𝑉
𝜕𝑆 𝑆𝑟

𝜕𝑉
𝜕𝑡 +

1
2 𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 + 𝑟𝑆
𝜕𝑉
𝜕𝑆 − 𝑟𝑉 = 0

The model assumes:
• European option
• investor can borrow or lend at rate 𝑟
• asset volatility remains constant
• no dividends paid, no transaction costs, short sales allowed

If dividends 𝑟𝐷 are paid in the asset, replace 𝑟𝑆 part with (𝑟 − 𝑟𝐷)𝑆.
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Solving Black-Scholes equation
European call/put at expiry: 𝑉 = max(𝑆 − 𝐾, 0), or value of put 𝑉 =
max(𝐾 − 𝑆, 0). Then the value of a call/put is

𝑐(𝑆, 𝑡) = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟𝑡𝑁(𝑑2)
𝑝(𝑆, 𝑡) = 𝐾𝑒−𝑟𝑡𝑁(−𝑑2) − 𝑆𝑁(−𝑑1)

where 𝑁(𝑑) =
1

√2𝜋
∫

𝑑

−∞
𝑒−𝑠2/2𝑑𝑠

𝑑1 =
log(𝑆/𝐾) + (𝑟 + 𝜎2/2)𝑡

𝜎√𝑡

𝑑2 =
log(𝑆/𝐾) + (𝑟 − 𝜎2/2)𝑡

𝜎√𝑡

Solving 𝜎2 from option price = Implied volatility.
Proof: With 𝜕𝑑1

𝜕𝑆 and 𝜕𝑑2
𝜕𝑆 , fit 𝜕𝑐

𝜕𝑡 , 𝜕𝑐
𝜕𝑆 , and 𝜕2𝑐

𝜕𝑆2 into the Black-
Scholes p.d.e. with boundary condition at lim𝑆→0 𝑐(𝑆, 𝑡) = 0 and
lim𝑆→∞ 𝑐(𝑆, 𝑡) = 𝑆 − 𝐾𝑒−𝑟𝑡. Then derive 𝑝(𝑆, 𝑡) from 𝑐(𝑆, 𝑡) from put-
call parity. □
Delta of call and put are respectively, 𝜕𝑐

𝜕𝑆 = 𝑁(𝑑1) and 𝜕𝑝
𝜕𝑆 = 𝑁(𝑑1) − 1

Black-Scholes model is good at pricing options at the money but less
so for out of the money and deep in the money options.
Risk-neutrality approach (?): Assume asset price modeled with drift
at interest rate 𝑟, 𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡. Then the density function of
future values of 𝑆𝑡

Pr[𝑆𝑡 = 𝑠] =
1

𝜎𝑠√2𝜋𝑡
exp

⎛⎜⎜⎜⎜⎜
⎝

−
(log( 𝑠

𝑆0
) − (𝑟 − 1

2 𝜎2)𝑡)
2

2𝜎2𝑡
⎞⎟⎟⎟⎟⎟
⎠

With payoff function 𝑉(𝑆𝑇 , 𝑇) at time 𝑇, the expected payoff is

𝐸[𝑉(𝑆𝑇 , 𝑇)] =
1

𝜎√2𝜋𝑇
∫

∞

0

𝑉(𝑠)
𝑠 exp

⎛⎜⎜⎜⎜⎜
⎝

−
(log( 𝑠

𝑆0
) − (𝑟 − 1

2 𝜎2)𝑇)
2

2𝜎2𝑇
⎞⎟⎟⎟⎟⎟
⎠

𝑑𝑠

discounting to present value:

𝐸[𝑉(𝑆0, 0)] =
𝑒−𝑟𝑇

𝜎√2𝜋𝑇
∫

∞

0

𝑉(𝑠)
𝑠 exp

⎛⎜⎜⎜⎜⎜
⎝

−
(log( 𝑠

𝑆0
) − (𝑟 − 1

2 𝜎2)𝑇)
2

2𝜎2𝑇
⎞⎟⎟⎟⎟⎟
⎠

𝑑𝑠

Which satisfies the p.d.e.

Binomial tree method
For handling path-dependent options and situations that Black-
Scholes equation cannot handle, e.g., interest rate options. Consider
asset price 𝑆 at discrete time period Δ𝑡, the probability of upward
(𝑆 → 𝑆𝑢) and downward (𝑆 → 𝑆𝑑) move are 𝜋𝑢 and 𝜋𝑑 respectively,
𝜋𝑢 + 𝜋𝑑 = 1. To make the model fit 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑡,

𝑢 = 𝑒𝜎√∆𝑡 𝑑 =
1
𝑢 𝜋𝑢 =

𝑒𝑟∆𝑡 − 𝑑
𝑢 − 𝑑 𝜋𝑑 = 1 = 𝜋𝑢 =

𝑢 − 𝑒𝑟∆𝑡

𝑢 − 𝑑
Algorithm:

1. set up a tree with 𝑆0 at root, each time step branch into upward
and downward price until expiry

2. at leaf nodes, derive option value based on the price
3. trace backward in time the expected option value, using the up-

ward and downward probabilities
4. expected option value at root = option price

Trinomial method is similar, with possibility of sideway move at
probability 𝜋𝑚:

E[𝑑𝑆/𝑆] = 𝜋𝑢𝑢 + 𝜋𝑚(0) + 𝜋𝑑𝑑 = 𝜇Δ𝑡
Var[𝑑𝑆/𝑆] = 𝜋𝑢𝑢2 + 𝜋𝑚(0) + 𝜋𝑑𝑑2 = 𝜇Δ𝑡2 + 𝜎2Δ𝑧2 ≈ 𝜎2Δ𝑡

1 = 𝜋𝑢 + 𝜋𝑚 + 𝜋𝑑

which gives the following:

𝑢 = 𝑒𝜎√2∆𝑡 𝑑 =
1
𝑢 = 𝑒−𝜎√2∆𝑡

𝜋𝑢 = ⎛⎜⎜
⎝

𝑒𝑟∆𝑡/2 − 𝑒−𝜎√∆𝑡/2

𝑒𝜎√∆𝑡/2 − 𝑒−𝜎√∆𝑡/2
⎞⎟⎟
⎠

2

𝜋𝑑 = ⎛⎜⎜
⎝

𝑒𝜎√∆𝑡/2 − 𝑒𝑟∆𝑡/2

𝑒𝜎√∆𝑡/2 − 𝑒−𝜎√∆𝑡/2
⎞⎟⎟
⎠

2

𝜋𝑚 = 1 − 𝜋𝑢 − 𝜋𝑑

Finite difference method
Solve Black-Scholes p.d.e. by discretization: option value 𝑉(𝑆, 𝑡),
solved on grid points of (𝑆, 𝑡) for 𝑆 ∈ [𝑆min, 𝑆max] and 𝑡 ∈ [0, 𝑇] with
increments Δ𝑆 and Δ𝑡 respectively. We substitute with finite differ-
ence form of partial derivatives:

𝜕𝑉
𝜕𝑡 ≈

𝑉(𝑆, 𝑡 + Δ𝑡) − 𝑉(𝑆, 𝑡)
Δ𝑡

𝜕𝑉
𝜕𝑆 ≈

𝑉(𝑆 + Δ𝑆, 𝑡) − 𝑉(𝑆 − Δ𝑆, 𝑡)
2Δ𝑆

𝜕2𝑉
𝜕𝑆2 ≈

𝑉(𝑆 + Δ𝑆, 𝑡) − 2𝑉(𝑆, 𝑡) + 𝑉(𝑆 − Δ𝑆, 𝑡)
Δ𝑆2

into the p.d.e. and get

𝜕𝑉
𝜕𝑡 +

1
2 𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 + 𝑟𝑆
𝜕𝑉
𝜕𝑆 − 𝑟𝑉 = 0

𝑉(𝑆, 𝑡 + Δ𝑡) − 𝑉(𝑆, 𝑡)
Δ𝑡 +

1
2 𝜎2𝑆2 𝑉(𝑆 + Δ𝑆, 𝑡) − 2𝑉(𝑆, 𝑡) + 𝑉(𝑆 − Δ𝑆, 𝑡)

Δ𝑆2

+𝑟𝑆
𝑉(𝑆 + Δ𝑆, 𝑡) − 𝑉(𝑆 − Δ𝑆, 𝑡)

2Δ𝑆 − 𝑟𝑉(𝑆, 𝑡) = 0

Solve for 𝑉(𝑆, 𝑡 + Δ𝑡) gives a system of linear equations of 𝑉(⋅, 𝑡):

𝑉(𝑆, 𝑡 + Δ𝑡) = 𝑎𝑉(𝑆 − Δ𝑆, 𝑡) + 𝑏𝑉(𝑆, 𝑡) + 𝑐𝑉(𝑆 + Δ𝑆, 𝑡)

where 𝑎 = −
1
2 𝜎2Δ𝑡

𝑆2

Δ𝑆2 +
𝑟Δ𝑡𝑆
2Δ𝑆

𝑏 = 1 +
𝜎2Δ𝑡𝑆2

Δ𝑆2 + 𝑟Δ𝑡

𝑐 = −
1
2 𝜎2Δ𝑡

𝑆2

Δ𝑆2 −
𝑟Δ𝑡𝑆
2Δ𝑆

Boundary conditions:
• for a call option, 𝑆 << 𝐾, 𝑉(𝑆, 𝑡) = 0 and 𝑉(𝑆, 𝑡) = 𝑆 as 𝑆 → ∞
• for a put option, 𝑆 >> 𝐾, 𝑉(𝑆, 𝑡) = 0 and 𝑉(𝑆, 𝑡) = 𝐾 as 𝑆 → 0
• at expiry, 𝑉(𝑆, 𝑡) = max(𝑆−𝐾, 0) for a call and 𝑉(𝑆, 𝑡) = max(𝐾 −

𝑆, 0) for a put
Solution by matrix: Compute 𝑉(𝑆, 𝑡) on a grid such that 𝑆 = 𝑆min+𝑖Δ𝑆
and 𝑡 = 𝑡0 + 𝑗Δ𝑡 with 𝑖 = 0, ⋯ , 𝑀 and 𝑗 = 0, ⋯ , 𝑁. Then the above
equation will become

𝑎𝑖𝑉𝑖−1,𝑗−1 + 𝑏𝑖𝑉𝑖,𝑗−1 + 𝑐𝑉𝑖+1,𝑗−1 = 𝑉𝑖,𝑗

And 𝑉⋅,𝑗−1 is related to 𝑉⋅,𝑗 by a tridiagonal matrix (which can be LU-
factorized). We can derive 𝑉(𝑆, 𝑡0) backward from 𝑉(𝑆, 𝑇) one step
at a time by matrix multiplication.
Solution by explicit derivation: The p.d.e. can be alternatively writ-
ten as

𝑉𝑖,𝑗+1 − 𝑉𝑖,𝑗

Δ𝑡 +
1
2 𝜎2𝑆2 𝑉𝑖+1,𝑗+1 − 2𝑉𝑖,𝑗+1 + 𝑉𝑖−1,𝑗+1

Δ𝑆2

+𝑟𝑆
𝑉𝑖+1,𝑗+1 − 𝑉𝑖−1,𝑗+1

2Δ𝑆 − 𝑟𝑉𝑖,𝑗 = 0
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by evaluating 𝜕𝑉
𝜕𝑆 and 𝜕2𝑉

𝜕𝑆2 at 𝑡 = 𝑡0 + (𝑗 + 1)Δ𝑡. Solving for 𝑉𝑖,𝑗 term

𝑉𝑖,𝑗 = 𝑑𝑖𝑉𝑖−1,𝑗+1 + 𝑒𝑖𝑉𝑖,𝑗+1 + 𝑓𝑖𝑉𝑖−1,𝑗+1

where 𝑑𝑖 =
1

1 + 𝑟Δ𝑡
⎛⎜⎜
⎝

−
1
2 𝑟Δ𝑡

𝑆min + 𝑖Δ𝑆
Δ𝑆 +

1
2 Δ𝑡𝜎2 (

𝑆min + 𝑖Δ𝑆
Δ𝑆

)
2
⎞⎟⎟
⎠

𝑒𝑖 =
1

1 + 𝑟Δ𝑡
⎛⎜⎜
⎝

1 − Δ𝑡𝜎2 (
𝑆min + 𝑖Δ𝑆

Δ𝑆
)

2
⎞⎟⎟
⎠

𝑓𝑖 =
1

1 + 𝑟Δ𝑡
⎛⎜⎜
⎝

1
2 𝑟Δ𝑡

𝑆min + 𝑖Δ𝑆
Δ𝑆 +

1
2 Δ𝑡𝜎2 (

𝑆min + 𝑖Δ𝑆
Δ𝑆

)
2
⎞⎟⎟
⎠

Monte Carlo analysis
Algorithm:

1. Generate random walks (usually lognormal) from 𝑡 to expiry
with increment Δ𝑡

2. At the end of each path, evaluate the payoff at expiry
3. Compuate average of all such payoff, and discount to PV by 𝑒−𝑟𝑡

Model stock price with lognormal distribution:

𝑑𝑓 = 𝜎𝑆
𝜕𝑓
𝜕𝑆 𝑑𝐵𝑡 + ⎛⎜

⎝
𝜇𝑆

𝜕𝑓
𝜕𝑆 +

1
2 𝜎2𝑆2 𝜕2𝑓

𝜕𝑆2
⎞⎟
⎠

𝑑𝑡

with 𝑓 = log 𝑆:

𝑑(log 𝑆) = 𝜎𝑆
1
𝑆 𝑑𝐵𝑡 + (𝜇𝑆

1
𝑆 +

1
2 𝜎2𝑆2(−

1
𝑆2 )) 𝑑𝑡

= 𝜎𝑑𝐵𝑡 + (𝜇 −
1
2 𝜎2) 𝑑𝑡

log 𝑆𝑇 − log 𝑆0 = ∫
𝑡=𝑇

𝑡=0
𝜎𝑑𝐵𝑡 + ∫

𝑇

0
(𝜇 −

1
2 𝜎2)𝑑𝑡

𝑆𝑇 = 𝑆0 exp ((𝜇 −
1
2 𝜎2)𝑇 + ∫

𝑡=𝑇

𝑡=0
𝜎𝑑𝐵𝑡)

⟹ Δ𝑆 = exp ((𝜇 −
1
2 𝜎2)Δ𝑡 + 𝜎√Δ𝑡𝑧)

with 𝑧 ∼ 𝑁(0, 1). Random walk is generated from steps 𝐷𝑒𝑙𝑡𝑎𝑆 of
random size.

Option greeks

Δ =
𝜕𝑉
𝜕𝑆 Γ =

𝜕2𝑉
𝜕𝑆2 𝜃 =

𝜕𝑉
𝜕𝑡 𝑣 =

𝜕𝑉
𝜕𝜎 𝜌 =

𝜕𝑉
𝜕𝑟

Delta Δ always have positive slope, with call Δ ≥ 0 and put Δ ≤ 0.
Call’s delta is 0 on extremely low stock price and 1 on extremely high
price, for option is worthless if deep out of money and lim

𝑆→∞
𝑉 = 𝑆 if

deep into the money.
Gamma Γ is the rate of change of delta, always positive. Gamma for
call and put are the same.
Theta 𝜃 is most sensitive when the option is close to the money, with
sensitivity decreasing as the option approaches expiry.
Vega 𝑣 is the option sensitivity to change in volatility. Vega for call
and put are the same.
Rho 𝜌 is the sensitivity of option price to interest rate.

4 Fixed income
Bond equivalent yield is computed on the basis of a 365-day year.
Probability of default estimation: A corporate bond with yield 𝑦 has
probability of default 𝑝, which assumed default will lost all value, if
a treasury bond has yield 𝑦′ and (1 − 𝑝)(1 + 𝑦) = (1 + 𝑦′)
Par yield: Coupon rate, the yield if priced at par.
Forward yield: Yield of a loan expected for future time.
Spot yield: Yield of the market today. Always between par and for-
ward.

For an upward sloping yield curve (i.e., yield goes up for par yield
and spot yield for longer time or forward yield further in the future),
forward > par.
For a downward sloping yield curve, forward < par.
PCA finds that 90% of price change of bonds was due to changes in
interest levels; 8.5% due to changing yield curve slope; 1.5% due to
change of curvature of the yield curve.
Binomial tree method for valuation: Black-Derman-Toy model, Ho-
Lee model, Heath-Jarrow-Morton model
Morgage-backed securities: Common to assume an annualized con-
stant prepayment rate (CPR) and find the equivalent single month
mortality rate (SMM):

𝑆𝑀𝑀 = 1 − (1 − 𝐶𝑃𝑅)1/12

5 Equity markets
Systematic risks: All stocks are subject to
Unsystematic risk: Company-specific portion of the risk
Price of stock calculated using perpetuity model: 𝑃 = 𝐷𝐼𝑉

𝑟𝐶𝐸
where 𝐷𝐼𝑉

is the dividend, expected to remain stable over time, 𝑟𝐶𝐸 is the (unob-
servable) cost of equity capital (e.g. hurdle rate for new projects). If
dividend is expected to grow at constant rate 𝑔, we have the Gordon
growth model

𝑃 =
𝐷𝐼𝑉0(1 + 𝑔)

𝑟𝐶𝐸 − 𝑔
Common multiples for analysis:

• price/earnig ratio
• dividend/price (aka dividend yield): high dividend yield if

price is undervalued
• price/sales
• price/book value
• price/cashflow
• return on asset

Capital asset pricing model (CAPM): Compare return of stock 𝑅𝑠 to
return of market 𝑅𝑚 with assumed risk-free return 𝑅𝑓

𝑅𝑠 − 𝑅𝑓 = 𝛽(𝑅𝑚 − 𝑅𝑓 )

where 𝛽 is the measure of correlation between the security and the
market. The return above 𝑅𝑓 is the excess return.
Dupont analysis: Calculate the return on equity as

𝑅𝑂𝐸 =
sales
assets

net income
sales

assets
equity

= (asset turnover)(profit margin)(leverage ratio)

Markowitz efficient frontier: Return vs Risk cluster plot will show a
boundary of max return on risk. The boundary is concave, monoton-
ically increasing on increasing risk.

Valuting convertible bonds
Convertible bond has a term sheet to specify a conversion price and
conversion ratio. Most convertible bonds are callable, allowing the
issuer to force conversion if so desired.

1. Determine the min value of the convertible bond (comparing the
bond as a straight bond without conversion feature)

2. Calculate the investment premium
3. Calculate the premium payback period
4. Calulate value of the embedded convertible bond option

Black-Scholes equation can be used to value option on the underly-
ing stock but not be used to value the embedded call. Bonds do not
have constant volatilities as BS assumed, but descreasing volatilities
as bonds approach maturity, for holder receives a known par at ma-
turity. Also bonds would never be worth more than its par value plus
any accrued coupons, thus bonds does not fit a lognormal distribu-
tion which price of zero to infinity are possible.
Example:
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1. 8-yr 7% coupon convertible bond, compare to 8% yield in mar-
ket, its par should be ∑16

𝑘=1
7
2 (1.04)−𝑘 +100(1.04)−16 = 94.17. The

$100 bond are convertible to 5.263 shares of stock when it hit
$19, which the conversion ratio is 𝑘 = 100/19 = 5.263. If the
current stock price is $15.5, the conversion value of the bond is
15.5𝑘 = 81.576. Taking the max of the two, the straight bond
should worth $94.17.

2. If the market price for this convertible bond is $120, the premium
is 120

94.17 − 1 = 27% over the market price of the bond. Alterna-
tively, the expected price for stock conversion is 120

5.263 = $22.8
per share, which is 22.8−15.5

15.5 = 47% premium over the market
price of the shares.

3. A fair value is which the coupon/dividend interest should offset
the premium we pay to hold the bond. Here the shares premium
over the coupon is 120−5.263(15.5)

7 = 5.48 years. Normally we ex-
pect this to be 3–5 years.

4. Value of the embedded call: price of convertible bond = price
of straight bond + call option. Say, 𝑇 = 8, 𝑆 = 15.5, 𝐾 = 19,
𝑟𝑓 = 5%, 𝜎 = 35%, using Black-Scholes, the call option per share
worth 6.835. Thus the price of the convertible bond should be
94.17 + 6.835(5.263) = 130.1. If the issuer can also call the bond
at any time after 3 years, we should subtract the value of issuer’s
call option.

6 Risk management
Value at Risk (VaR): the economic loss that can be expected at a given
confidence level under adverse market condtions, calculated using
simulation or distribution
To measure VaR, first evaluate all possible risk exposures and choose
a confidence level (e.g. 95% or 99%), and a time horizon. Then the
”worst case” value is

𝑉𝑎𝑅 = 𝑉0𝛼𝜎√𝑡

where 𝛼 is the inv of std normal distribution at the selected confidence
interval, 𝜎 is the asset’s std dev, 𝑡 is the time scale factor between 𝜎
and VaR (equity takes 𝑡 = 250 to convert daily volitility to annual)
and 𝑉0 to the spot price.

A Formulae
Taylor series

𝑓 (𝑥) =
∞
∑
𝑛=0

𝑓 (𝑛)(𝑘)
𝑛! (𝑥 − 𝑘)𝑛 = 𝑓 (𝑘) + 𝑓 ′(𝑘)(𝑥 − 𝑘) +

𝑓 ″(𝑘)
2! (𝑥 − 𝑘)2 + ⋯

Multivariate Taylor series:

𝑑𝑓 (𝑥, 𝑦) = 𝑓 (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) − 𝑓 (𝑥, 𝑦)

=
𝜕𝑓
𝜕𝑥 𝑑𝑥 +

𝜕𝑓
𝜕𝑦 𝑑𝑦 +

1
2!

⎛⎜
⎝

𝜕2𝑓
𝜕𝑥2 𝑑𝑥2 + 2

𝜕2𝑓
𝜕𝑥𝜕𝑦 𝑑𝑥𝑑𝑦 +

𝜕2𝑓
𝜕𝑦2 𝑑𝑦2⎞⎟

⎠
+ ⋯

Variance scaling: 𝑉𝑎𝑟(𝛼𝑋) = 𝛼2𝑉𝑎𝑟(𝑋)

CLT: 𝑍 =
�̄� − 𝜇𝑋
𝜎𝑋/√𝑛 is normally distributed regardless the distro of 𝑋

Lognormal PDF: 𝑓 (𝑥) =
1

√2𝜋𝜎2𝑥2
exp ⎛⎜

⎝
−

(ln 𝑥 − 𝜇)2

2𝜎2
⎞⎟
⎠
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