Random Matters

Adrian Sai-Wah TAM

October 3, 2005

Chapter 1

Probability

1.1 Probability Measure

ullet Sample space: Ω

• Events: $\mathscr{A} \subset \Omega$

• Probability measure: $P : {\mathscr A : \mathscr A \subset \Omega} \to [0,1]$

1.2 Probability models

1.2.1 Formulas and notations

• Expectation: $E\{X\} = \int_{-\infty}^{\infty} x f_X(x) dx$ for continuous and $E\{X\} = \sum_{x} x f_X(x)$ for discrete

$$- E\{h(X)\} = \int_{\Omega} h(x) f_X(x) dx$$

• Variance: $\sigma_X^2 = E\{(X - E\{X\})^2\} = E\{X^2\} - (E\{X\})^2$

- Known as Steiner's tyheorem

• Baye's formula: $\Pr[A_i|B] = \frac{P(A_i)P(B|A_i)}{\sum\limits_{i=1}^{n} P(A_j)P(B|A_j)}$

• Total probability formula: $P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$

• Chebyshev's inequality: Given n experiments and the experimental mean is \bar{X} ,

$$P(|\bar{X} - \mu| > t) \le \frac{\sigma^2}{nt^2}$$

2

• Construction of random variables: Inverse transform method

– Let y be a uniformly distributed random value in [0,1]

- Commulative distribution function interested: $y = F(x) = \Pr[X \le x]$

 $-x = F^{-1}(y)$

• Little *o* notation: f(x) = o(x) if $\lim_{x \to 0} \frac{f(x)}{x} = 0$

1.2.2 Exponential distribution and Poisson formula

- Random event with average rate of occurance: λ
 - Average number of occurance in duration x: λx
 - Probability of having occurance in infinitesimal interval δt : $\lambda \delta t$
 - In time interval (0,t], we partition the interval into n equal parts, each with length $\delta t = t/n$
 - Probability of having $k \le n$ occurances in (0,t]: $p_k(t) = \binom{n}{k} (\lambda \delta t)^k (1 \lambda \delta t)^{n-k}$
 - Taking limit of $n \to \infty$: $p_k(t) = \lim_{n \to \infty} \binom{n}{k} (\lambda \, \delta t)^k (1 \lambda \, \delta t)^{n-k} = \frac{e^{-\lambda t} (\lambda t)^k}{k!}$
- Probability of no occurance in (0,t]: $p_0(t) = \lambda e^{-\lambda t}$
 - Interarrival time distribution: $p_0(t) = \lambda e^{-\lambda t}$
 - c.d.f.: $P_0(t) = 1 e^{-\lambda t}$
 - Mean interarrival time: $E(t) = 1/\lambda$
 - Variance: $\sigma_t^2 = 1/\lambda^2$

1.2.3 Erlang distribution

- Truncated Poisson distribution
 - Poisson arrivals is truncated by the capacity of outlets
 - Poisson arrivals, the waiting time for k more arrivals (i.e. the arrival time for the k-th customer):

$$p(t) = \frac{e^{-\lambda t} \lambda (\lambda t)^{k-1}}{(k-1)!} = \frac{e^{-\lambda t} \lambda^k t^{k-1}}{(k-1)!}$$

- Erlang-k distribution (E_k) is the distribution of the sum of k i.i.d. exponential random variables, i.e. convolution of k i.i.d. exponentials
 - Each random variable with mean λ
 - Mean of the sum (Erlang-k): k/λ
 - Variance: k/λ^2
- $E_{k-1,k}(\lambda)$ distribution
 - Mix of E_{k-1} and E_k
 - A random variable X is the sum of (1) k-1 i.i.d. exponential variables with probability p and (2) k i.i.d. exponential variables with probability q = 1 p:

$$p(t) = p \frac{e^{-\lambda t} \lambda^{k-1} t^{k-2}}{(k-2)!} + (1-p) \frac{e^{-\lambda t} \lambda^k t^{k-1}}{(k-1)!}$$

1.2.4 Other distributions

- Geometric distribution
 - pmf: $p(x) = (1-p)p^x$
 - Mean: E(x) = p/(1-p)
 - Variance: $\sigma_x^2 = p/(1-p)^2$
- Gamma distribution
 - General form of Erlang distribution (i.e. convolution of k i.i.d. exponentials where k is a positive real number)

- Probability density function:

$$f(x) = \frac{\left(\frac{x-\mu}{\beta}\right) \exp\left(\frac{x-\mu}{\beta}\right)}{\beta \Gamma(\gamma)}$$

with
$$x \ge \mu$$
 and $\gamma, \beta \ge 0$

- Hyperexponential: Random select one of k exponentials (referred by H_k)
 - A random variable X is any one of the k exponential distributed random variables x_i (i = 1, ..., k)
 - $X = x_i$ with probability α_i
 - $-x_i$ is exponentially distributed with parameter λ_i

- pdf of
$$X$$
: $p(t) = \sum_{i=1}^{k} \alpha_i \lambda_i e^{-\lambda_i t}$

– Mean:
$$E(x) = \sum_{i=1}^{k} \alpha_i / \lambda_i$$

- Coefficient of variation:
$$C_X^2 = \frac{2\sum_{i=1}^r \alpha_i/\lambda_i^2}{\left(\sum_{i=1}^r \alpha_i/\lambda_i\right)^2} - 1 \ge 1$$

- * The inequality can be proved by Cauchy-Schwarz inequality
- Hypoexponential
 - Sum of k exponential random variables each with parameter λ_i (i = 1, ..., k)

*
$$X = \sum_{i=1}^{k} x_i$$
, with $p_{x_i}(t) = \lambda_i e^{-\lambda_i t}$

– If $\lambda_i = \lambda$ for all *i*, it is the Erlang distribution

1.2.5 Important series formulas

- Geometric series: $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ with x < 1
- $\bullet \sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2} \text{ with } x < 1$

1.2.6 Markov Chains

- State space: S
- Transition probability: P_{ij} . Transition probability matrix $\mathbf{P} = (P_{ij})_{n \times n}$
- Classification of states:
 - Leads to: State *i* leads to state *j* if $\mathbf{P}_{ii}^n > 0$ for some *n*
 - Communicates: State i leads to state j and vice versa. Communicate is reflexive, symmetric and transitive.
 - Communicate is a class property
 - A Markov chain is irreducible if there is only one communicating class
 - State *i* is recurrent if $P_{ii}^n > 0$ for some *n*. Transient otherwise.
 - * If a state is a communicating class is recurrent, all states are recurrent
 - * If mean time to recurrent is ∞, we call it null recurrent
 - The period of a recurrent state *i* is the G.C.D. of $\{n: P_{ii}^n > 0\}$
 - Aperiodic: Period of 1
- Ergodic MC: aperiodic, positive recurrent, irreducible

1.2.7 Continuous-time Markov Chain

- A process $\{X(t): t \ge 0\}$ takes on values of state space S such that $\Pr\{X(t+s) = j | X(t) = i\} = P_{ij}(s,s+t)$ is a CTMC
 - Memoryless
- CTMC with stationary transitions if $P_{ij}(s, s+t) = P_{ij}(0, t) = P_{ij}(t)$
- Chapman-Kolmogorov equations: $P_{ij}(s+t) = \sum_k P_{ik}(s)P_{kj}(t)$ or $\mathbf{P}(s+t) = \mathbf{P}(s)\mathbf{P}(t)$
- Time from entering state i to leaving state i (a.k.a. holding time) has exponential distribution with rate v_i
 - Instantaneous transition rate from i to j: $q_{ij} = P'_{ij}(0) = v_i P_{ij}$
 - Kolmogorov forward equations: $P'_{ij}(t) = \sum_{k \neq i} q_{kj} P_{ik}(t) v_i P_{ij}(t)$
 - Kolmogorov backward equations: $P'_{ij}(t) = \sum_{k \neq j} q_{ik} P_{kj}(t) v_i P_{ij}(t)$
 - Derivation:

$$\begin{split} \mathbf{P}(t+h) &= \mathbf{P}(h)\mathbf{P}(t) \\ \frac{\mathbf{P}(t+h) - \mathbf{P}(t)}{h} &= \frac{\mathbf{P}(h)\mathbf{P}(t) - \mathbf{P}(t)}{h} = \frac{\mathbf{P}(h)\mathbf{P}(t) - \mathbf{P}(0)\mathbf{P}(t)}{h} \\ &= \frac{[\mathbf{P}(h) - \mathbf{P}(0)]\mathbf{P}(t)}{h} \\ \lim_{h \to 0} \frac{\mathbf{P}(t+h) - \mathbf{P}(t)}{h} &= \lim_{h \to 0} \frac{[\mathbf{P}(h) - \mathbf{P}(0)]\mathbf{P}(t)}{h} \\ \mathbf{P}'(t) &= \mathbf{P}'(0)\mathbf{P}(t) \\ & \therefore P'_{ij}(0) = \sum_{k} P'_{ik}(0)P_{kj}(t) \end{split}$$

or using $\mathbf{P}(t+h) = \mathbf{P}(t)\mathbf{P}(h)$ for forward equation

- If the CTMC is strongly recurrent, the transition probability approaches stationary distribution: $P_{ij}(t) \to \pi_j$
- Stationary initial probability: $v_j \pi_j = \sum_{k \neq j} q_{kj} \pi_k$
- Transition probability: $\mathbf{P}(t) = e^{\mathbf{Q}t}$ with $Q_{ij} = \begin{cases} q_{ij} & i \neq j \\ -v_i & i = j \end{cases}$ and $e^{\mathbf{Q}t} = \sum_{n=0}^{\infty} \frac{(\mathbf{Q}t)^n}{n!}$
 - **Q** is called the infinitesimal generator
 - Writing in symmetric matrix form: $\mathbf{Q} = \mathbf{M} \Lambda \mathbf{M}^{-1}$, then we have $\mathbf{P}(t) = \sum_{n=0}^{\infty} (\mathbf{M} \Lambda \mathbf{M}^{-1})^n \frac{t^n}{n!} = \mathbf{M} \left(\sum_{n=0}^{\infty} \frac{\Lambda^n t^n}{n!} \right) \mathbf{M}^{-1}$
 - $-\pi Q = 0$
 - Given the distribution at time t=0 is $\pi(0)$, the distribution at time t is $\pi(t)=\pi(0)e^{\mathbf{Q}t}$
- Birth death process: $q_{ij} = \begin{cases} 0 & |i-j| > 1 \\ \lambda_i & j = i+1 \\ \mu_i & j = i-1 \end{cases}$ with birth rate λ_i and death rate μ_i
 - Linear birth and death process: $\lambda_n = n\lambda$ and $\mu_n = n\mu$ with $\lambda < \mu$ which has $\pi_n = \frac{(\lambda/\mu)^n}{1 (\lambda/\mu)}$.

1.2.8 Semi-Markov Process

- Definition
 - $\{Z_n\}$ is a DTMC with state space S and transition matrix **P**
 - $-\{Y_n^{(i)}\}\ i \in S$ is several i.i.d. random sequences with c.d.f. $F_i(x) = \Pr\{Y_n^{(i)} \le x\}$
 - If $\sum_{k=1}^{m} Y_k^{(Z_k)} \le t < \sum_{k=1}^{m+1} Y_k^{(Z_k)}$, then $X(t) = Z_m$. X(t) is the SMP.
- My view:
 - Z_n controls us to look at which $\{Y_n^{(i)}\}$
 - For every step n, we look at a (possibly) different $Y_n^{(i)}$, and accumulate the sum along n
 - We make up a sequence such as: $Y_0^{(1)}, Y_1^{(4)}, Y_2^{(3)}, \dots, Y_k^{(2)}, Y_{k+1}^{(5)}, \dots$
 - The sequence make up the time line by concatenation
 - At time t on the time line, we refer to last index of $Y_k^{(i)}$, i.e. i. Take it as the SMP
- If $\{Y_n^{(i)}\}$ are all exponential distributed with parameter λ_i , then X(t) is a CTMC
- Assume X(t) is a MC (or has a embedded MC) with transition probability λ_{ij}

$$- \lambda_{ij} = \lambda_i P_{ij}$$

$$- P_{ij} = \frac{\lambda_{ij}}{\sum_{k \in S} \lambda_{ik}} \text{ with } i \neq j, P_{ii} = 0$$

$$- \lambda_i = \sum_{i \in S} \lambda_{ij}$$

- Stationary distribution:
 - Define $\pi'_j = \lim_{n \to \infty} \Pr\{Z_n = j\}$ and $\pi_j = \lim_{t \to \infty} \Pr\{X(t) = j\}$

$$- \pi_j = rac{\pi_j' E\{Y^{(j)}\}}{\sum\limits_{i \in S} \pi_i' E\{Y^{(i)}\}}$$

1.2.9 References:

- [14], "Markov Process"
- [5], Lecture 19-20
- [2], Chapter 1, "Introduction"
- [11], Chapter 5, "The Exponential Distribution and the Poisson Process"

1.3 Wiener Process

1.3.1 Brownian Motion

1.3.1.1 Definition

• A symmetric random walk X(t) with step size δx and take a step every δt time

$$-X(t) = (X_1 + X_2 + \dots + X_n)\delta x$$
 where $n = \left\lfloor \frac{t}{\delta t} \right\rfloor$

- $-X_i = \begin{cases} 1 & \text{if step } i \text{ is upward} \\ -1 & \text{if step } i \text{ is downward} \end{cases}$
- Mean: $E\{X(t)\} = 0$

- Variance: $Var\{X(t)\} = \left|\frac{t}{\delta t}\right| (\delta x)^2$
- If we set $\delta x = \sigma \sqrt{\delta t}$, and let $\delta t \to 0$, then $Var\{X(t)\} = \sigma^2 t$ and X(t) is a Brownian motion
- A stochastic process S(t) is a Brownian motion if
 - 1. $S(t) N(0, \sigma^2 t)$
 - 2. Independent increments: if $t_0 < t_1 < \cdots < t_n$, then $S(t_1) S(t_0)$, $S(t_2) S(t_1)$, ..., $S(t_n) S(t_{n-1})$ are independent
 - 3. Increments are stationary regardless of s: $S(t+s) S(s) N(0, \sigma^2 t)$
 - 4. S(0) = 0

1.3.1.2 Standard Brownian motion

- If $\sigma = 1$, the Brownian motion is called the standard Brownian motion. For any Brownian motion X(t), $B(t) = X(t)/\sigma$ is a standard Brownian motion
 - If X(t) is a standard Brownian motion, the p.d.f. of X(t) is given by: $f_t(x) = \frac{1}{\sqrt{2\pi t^2}} e^{-x^2/2t}$
 - P.d.f. of $X(t_1) = x_1, X(t_2) = x_2, \dots, X(t_n) = x_n$ with $t_1 < t_2 < \dots < t_n$:

$$f(x_1, x_2, \dots, x_n) = f_{t_1}(x_1) f_{t_2 - t_1}(x_2 - x_1) \cdots f_{t_n - t_{n-1}}(x_n - x_{n-1})$$

$$= \frac{\exp\left(-\frac{x_1^2}{2t_1} - \frac{(x_2 - x_1)^2}{2(t_2 - t_1)} - \cdots - \frac{(x_n - x_{n-1})^2}{2(t_n - t_{n-1})}\right)}{\sqrt{(2\pi)^n \left[t_1(t_2 - t_1) \cdots (t_n - t_{n-1})\right]}}$$

• Conditional probability with of X(s) given X(t) = B with s < t (the future value):

$$f_{s|t}(x|B) = \frac{f_s(x)f_{t-s}(B-x)}{f_t(B)}$$

$$= \frac{\exp\left(-\frac{x^2}{2s} - \frac{(B-x)^2}{2(t-s)}\right)}{\sqrt{(2\pi)^2s(t-s)}} / \frac{\exp\left(-\frac{B^2}{2t}\right)}{\sqrt{2\pi t}}$$

$$= \sqrt{\frac{t}{2\pi s(t-s)}} \exp\left(-\frac{sB^2 - 2Bsx + tx^2}{2s(t-s)} + \frac{B^2}{2t}\right)$$

$$= \sqrt{\frac{t}{2\pi s(t-s)}} \exp\left(-\frac{B^2s/t - 2Bxs/t + x^2}{2s(t-s)/t} + \frac{B^2}{2t}\right)$$

$$= \sqrt{\frac{t}{2\pi s(t-s)}} \exp\left(-\frac{x^2 - 2Bxs/t + (Bs/t)^2 - (Bs/t)^2 + B^2s/t}{2s(t-s)/t} + \frac{B^2}{2t}\right)$$

$$= \sqrt{\frac{t}{2\pi s(t-s)}} \exp\left(-\frac{(x - Bs/t)^2 - B^2s(s-t)/t^2}{2s(t-s)/t} + \frac{B^2}{2t}\right)$$

$$= \sqrt{\frac{t}{2\pi s(t-s)}} \exp\left(-\frac{(x - Bs/t)^2}{2s(t-s)/t} + \frac{B^2s(s-t)/t^2}{2s(t-s)/t} + \frac{B^2}{2t}\right)$$

$$= \sqrt{\frac{t}{2\pi s(t-s)}} \exp\left(-\frac{(x - Bs/t)^2}{2s(t-s)/t} + \frac{B^2s(s-t)/t^2}{2s(t-s)/t} + \frac{B^2}{2t}\right)$$

$$= \sqrt{\frac{t}{2\pi s(t-s)}} \exp\left(-\frac{(x - Bs/t)^2}{2s(t-s)/t}\right)$$

$$-E\{X(s)|X(t) = B\} = \frac{s}{t}B$$
$$-Var\{X(s)|X(t) = B\} = \frac{s}{t}(t-s)$$

- However, if $\tau < t$ (the past value) is given,
 - Expected increment is zero:

$$\begin{split} E\{S(t)|S(\tau)\} &= E\{S(t) - S(\tau) + S(\tau)|S(\tau)\} \\ &= E\{S(t) - S(\tau)|S(\tau)\} + E\{S(\tau)|S(\tau)\} \\ &= 0 + S(\tau) \\ &= S(\tau) \end{split}$$

- Variance increases with time:

$$Var\{S(t)|S(\tau)\} = Var\{S(t) - S(\tau) + S(\tau)|S(\tau)\}$$

$$= Var\{S(t) - S(\tau)|S(\tau)\}$$

$$= Var\{S(t) - S(\tau)\}$$

$$= t - \tau$$

- Combining Brownian motion: Let X $N(0, \sigma^2)$ and Y $N(0, \tau^2)$ are independent. Z = X + Y.
 - Conditional distribution of X given Z:

$$f_{X|Z}(x|z) = \frac{f_{X,Z}(x,z)}{f_{Z}(z)} = \frac{f_{X,Y}(x,z-x)}{f_{Z}(z)}$$
$$= \frac{f_{X}(x)f_{Y}(z-x)}{f_{Z}(z)}$$

where $ZN(0, \gamma^2)$ with $\gamma^2 = \sigma^2 + \tau^2$. Hence

$$f_{X|Z}(x,z) = \frac{\frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{x^2}{2\sigma^2}) \cdot \frac{1}{\sqrt{2\pi\tau^2}} \exp(-\frac{(z-x)^2}{2\tau^2})}{\frac{1}{\sqrt{2\pi\gamma^2}} \exp(-\frac{z^2}{2\gamma^2})}$$
$$= \frac{1}{\sqrt{2\pi b^2}} \exp(-\frac{(x-a)^2}{2b^2})$$

where $b = \frac{\tau \sigma}{\gamma}$ and $a = \frac{b^2 z}{\tau^2} = \frac{\sigma^2}{\sigma^2 + \tau^2} z$. That is, given Z, the conditional distribution of $X N(a, b^2)$.

- If
$$t < s$$
 such that $X = X(t)$, $Y = X(s) - X(t)$, and $Z = X + Y = X(s)$. Then $\sigma_X^2 = t$, $\sigma_Y^2 = s - t$, $\sigma_Z^2 = s - t + t = s$.

*
$$a = \frac{t}{s}X(s)$$

* $b^2 = \frac{(s-t)t}{s}$
* $E\{X|Z\} = E\{X(t)|X(s)\} = \frac{t}{s}X(s)$
* $Var\{X|Z\} = E\{X(t)|X(s) = \frac{(s-t)t}{s}$

1.3.1.3 Hitting Time

• Hitting time: Given X(0) = 0 and X(t) N(0,t). Let the first time of a particular motion to hit a > 0 is T_a ,

$$\begin{aligned} \Pr\{X(t) \geq a\} &= \Pr\{X(t) \geq a | T_a \leq t\} \Pr\{T_a \leq t\} + \Pr\{X(t) \geq a | T_a > t\} \Pr\{T_a > t\} \\ &= \frac{1}{2} \Pr\{T_a \leq t\} + 0 \\ \therefore \Pr\{T_a \leq t\} &= 2 \Pr\{X(t) \geq a\} \\ &= \frac{2}{\sqrt{2\pi t}} \int_a^{\infty} e^{-x^2/2t} dx \\ &= \frac{2}{\sqrt{2\pi}} \int_{a/\sqrt{t}}^{\infty} e^{-x^2/2t} dx \end{aligned}$$

- $\Pr\{X(t) \ge a | T_a \le t\} = \frac{1}{2}$ because of the symmetric nature of Brownian motion
- $\Pr\{X(t) \ge a | T_a > t\} = 0$ is obvious by definition of T_a
- For general $a \in (-\infty, \infty)$, $\Pr\{T_a \le t\} = \frac{2}{\sqrt{2\pi}} \int_{|a|/\sqrt{t}}^{\infty} e^{-x^2/2t} dx$
- Similarly, we can have $\Pr\{\max_{0 \le s \le t} X(s) \ge a\} = \Pr\{T_a \le t\} = \frac{2}{\sqrt{2\pi}} \int_{|a|/\sqrt{t}}^{\infty} e^{-x^2/2t} dx$
- The probability of hitting a before hitting -b (with a,b>0) can be analyzed by symmetric random walk with step size $\delta x \to 0$:

$$\Pr\{\text{hitting } a \text{ before hitting } -b\} = \frac{b}{a+b}$$

1.3.1.4 Box-Muller Method for Simulating N(0,1)

- Normal density function: $N(0,1) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$
- If two uniform random numbers are drawn from [0, 1],

$$y = \sqrt{-2\ln x_1}\cos(2\pi x_2)$$

will give y N(0,1)

1.3.1.5 Brownian motion with drift

- Brownian motion with drift: $X(t) = \sigma B(t) + \mu t$ where B(t) is a standard Brownian motion
 - $-X(t)N(\mu t,\sigma^2 t)$
 - X(t) still has stationary and independent increments, and X(0) = 0

1.3.2 Geometric Brownian motion

- If $\{X(t)\}$ is a Brownian motion with drift, then $Y(t) = e^{X(t)}$ is a geometric Brownian motion
- Geometric brownian motion: $Y(t) = e^{X(t)}$ where X(t) is a Brownian motion with drift
 - $-X(t)N(\mu t,\sigma^2 t)$, where μ is called the drift parameter and σ is called the volatility of Y(t)
 - Given all the past value up to s < t,

$$E\{Y(t)|Y(u): 0 \le u \le s\} = E\{e^{X(t)}|X(u): 0 \le u \le s\}$$

$$= E\{e^{X(s)+X(t)-X(s)}|X(u): 0 \le u \le s\}$$

$$= e^{X(s)}E\{e^{X(t)-X(s)}|X(u): 0 \le u \le s\}$$

$$= Y(s)E\{e^{X(t)-X(s)}\}$$

$$= Y(s)e^{\mu(t-s)+(t-s)\sigma^{2}/2}$$

$$= Y(s)e^{(t-s)(\mu+\sigma^{2}/2)}$$
(1.1)

where a result from the moment generating function $E\{e^{aW}\}=e^{aE\{W\}+a^2Var\{W\}/2}$ is used

– Ratio of a geometric Brownian motion $\{Y\}$ at $t + \tau$ and τ is lognormal distributed:

$$\log\left(\frac{Y(t+\tau)}{Y(\tau)}\right)\,N(\mu t,\sigma^2 t)$$

- A stochastic process $\{X(t)\}$ is a martingale if $E\{X(t)|X(u): 0 \le u \le s\} = X(s)$ whenever s < t.
 - A geometric brownian motion can be a martingale with $\mu=-\frac{\sigma^2}{2}$
- Use of geometric Brownian motion: Security price modeling Let S(t) be the price of a security at t, then the expected price is given by

$$E[S(t)] = S(0) \exp\left(\frac{(\mu + \sigma^2)}{2}t\right)$$

- S(t) is a limit as the following: Price of the security will go up by the factor u with probability p and go down by the factor d with probability 1-p in every δt time units, where

$$u = \exp(\sigma\sqrt{\delta t})$$
$$d = \exp(-\sigma\sqrt{\delta t})$$
$$p = \frac{1}{2}\left(1 + \frac{\mu}{\sigma}\sqrt{\delta t}\right)$$

As $\delta t \rightarrow 0$, S(t) is obtained as previously mentioned

1.3.3 Pricing Stock Options

1.3.3.1 Arbitrage

- Option scenario: An option of price cy to buy y shares of a stock at price P at time t
 - At time 0, the option and x share of stock is purchased at price $P_0 < P$. Total cost is $P_0x + cy$
 - At time t, the stock price per share can either be $P_1 > P > P_0$ or $P_2 < P_0 < P$
 - * If P_1 : The total worth is $P_1x + (P_1 P)y$
 - * If P_2 : The total worth is P_2x
 - * Fix the worth at *t*:

$$P_1x + (P_1 - P)y = P_2x$$

 $y = -\frac{P_1 - P_2}{P_1 - P}x$

– Gain at t:

$$P_2x - P_0x - cy = (P_2 - P_0 + \frac{P_1 - P_2}{P_1 - P}c)x$$

$$= \frac{PP_0 + P_1P_2 - PP_2 - P_0P_1 + cP_1 - cP_2}{P_1 - P}x$$

with careful choice of c and x, we can make the gain always non-negative. A sure win betting in this mannar is called an arbitrage.

• Arbitrage theorem:

A set of possible outcomes $S = \{1, 2, ..., m\}$ and n wagers. Amount $x_i \in \mathbb{R}$ is bet on wager i and the return $x_i r_i(j)$ is earned if the outcome is j. A betting scheme $\mathbf{x} = (x_1, x_2, ..., x_n)$ will have the return $R = \sum_{i=1}^n x_i r_i(j)$ on outcome j. Then either

- 1. There exists a probability vector $\mathbf{p} = (p_1, p_2, \dots, p_m)$ which $\sum_{i=1}^m p_i r_i(j) = 0, \forall i = 1, \dots, n$, or
- 2. There exists a betting scheme $x = (x_1, x_2, ..., x_n)$ which $\sum_{i=1}^{m} x_i r_i(j) > 0$, $\forall j = 1, ..., m$

1.3.3.2 Black-Scholes option pricing formula

- Present price of a stock is $X(0) = x_0$. Current interest rate is α (i.e. $100\alpha\%$).
- Let the price of a stock at t is X(t). Then the present value of X(t) is $e^{-\alpha t}X(t)$
- Option i costs c_i per share to allow a purchase of stock at time t_i for the price of K_i per share. i = 1, ..., N
- There is no sure win strategy, hence, by arbitrage theorem, there is a probability measure **P** over the set of outcomes under which all the wagers have zero expected return
- A wager observe the stock up to time s, then purchasing stock at s and selling it at t, with $0 \le s < t \le T$. The expected return to be zero.
 - Present value of purchasing: $e^{-\alpha s}X(s)$
 - Present value of selling: $e^{-\alpha t}X(t)$
 - Expected return is zero:

$$E_{\mathbf{P}}\left\{e^{-\alpha t}X(t) - e^{-\alpha s}X(s) : 0 \le u \le s\right\} = 0$$

$$E_{\mathbf{P}}\left\{e^{-\alpha t}X(t)|X(u) : 0 \le u \le s\right\} = e^{-\alpha s}X(s)$$
(1.2)

- The wager purchased an option for buying one share of the stock at t for the price K
 - At time t, the worth of the option is $(X(t) K)^+$
 - Present value of the option: $e^{-\alpha t} (X(t) K)^+$

- Cost of option at time 0 with no arbitrage possible: $c = E_{\mathbf{P}} \left\{ e^{-\alpha t} \left(X(t) K \right)^{+} \right\}$
- Condition for arbitrage possible: The is no P that satisfies both

$$E_{\mathbf{P}}\left\{e^{-\alpha t_i}X(t_i)|X(u):\ 0\leq u\leq s\right\} = e^{-\alpha s}X(s) \tag{1.3}$$

$$E_{\mathbf{P}}\left\{e^{-\alpha t_{i}}(X(t_{i})-K_{i})^{+}\right\}=c_{i}$$
(1.4)

for some option i with present cost c_i and exercise price K_i at time t_i

• Suppose price $X(t) = x_0 e^{Y(t)}$ is a geometric Brownian motion with drift coefficient μ and variance parameter σ^2 . If defining $\alpha = \mu + \sigma^2/2$, and using equation (1.1):

$$E\{X(t)|X(u): 0 \le u \le s\} = X(s)e^{(t-s)(\mu+\sigma^2/2)}$$
$$= X(s)e^{\alpha(t-s)}$$
$$\therefore E\{e^{-\alpha t}X(t)|X(u): 0 \le u \le s\} = e^{-\alpha s}X(s)$$

- If **P** is the probability measure governing $\{x_0e^{Y(t)}: 0 \le t \le T\}$ where Y(t) $N(\mu t, \sigma^2 t)$, the equation (1.2) is satisfied
- For no arbitrage, the price of an option is $c = E_{\mathbf{P}} \{ e^{-\alpha t} (X(t) K)^{+} \}$, i.e.

$$ce^{\alpha t} = E_{\mathbf{P}} \left\{ (X(t) - K)^{+} \right\}$$

$$= \int_{-\infty}^{\infty} (x_{0}e^{y} - K)^{+} p(y) dy$$

$$= \int_{\log(K/x_{0})}^{\infty} (x_{0}e^{y} - K) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}t}} e^{-(y-\mu t)^{2}/2\sigma^{2}t} dy$$

$$\text{Let } w = \frac{y - \mu t}{\sigma\sqrt{t}},$$

$$\therefore dw = \frac{1}{\sigma\sqrt{t}} dy$$

$$y = \sigma\sqrt{t}w + \mu t$$

$$\text{Then } ce^{\alpha t} = \int_{\log(K/x_{0})}^{\infty} (x_{0}e^{y} - K) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}t}} e^{-(y-\mu t)^{2}/2\sigma^{2}t} dy$$

$$= \int_{\log(K/x_{0})}^{\infty} (x_{0}e^{\sigma\sqrt{t}w + \mu t} - K) \cdot \frac{1}{\sqrt{2\pi\sigma^{2}t}} e^{-w^{2}/2} \sigma\sqrt{t} dw$$

$$= \int_{\log(K/x_{0})}^{\infty} (x_{0}e^{\sigma\sqrt{t}w + \mu t} - K) \cdot \frac{1}{\sqrt{2\pi}} e^{-w^{2}/2} dw$$

$$= \frac{x_{0}e^{\mu t}}{\sqrt{2\pi}} \int_{w_{0}}^{\infty} e^{\sigma w\sqrt{t}} e^{-w^{2}/2} dw - \frac{K}{\sqrt{2\pi}} \int_{w_{0}}^{\infty} e^{-w^{2}/2} dw$$

$$\text{with } w_{0} = \frac{\log(K/x_{0}) - \mu t}{\sigma\sqrt{t}}.$$

$$\text{Consider } \frac{1}{\sqrt{2\pi}} \int_{w_{0}}^{\infty} e^{\sigma w\sqrt{t}} e^{-w^{2}/2} dw = \frac{e^{t\sigma^{2}/2}}{\sqrt{2\pi}} \int_{w_{0}}^{\infty} e^{-(w - \sigma\sqrt{t})^{2}/2} dw$$

$$= e^{t\sigma^{2}/2} \Pr\{N(\sigma\sqrt{t}, 1) \ge w_{0}\}$$

$$= e^{t\sigma^{2}/2} \Pr\{N(0, 1) \ge w_{0} - \sigma\sqrt{t}\}$$

- Standard normal distribution function:
$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{z}{\sqrt{2}}\right) \right)$$
* $\operatorname{Pr}\{N(0,1) \ge z\} = \operatorname{Pr}\{N(0,1) \le -z\} = \Phi(-z)$

- Hence we have

$$ce^{\alpha t} = \frac{x_0 e^{\mu t}}{\sqrt{2\pi}} \int_{w_0}^{\infty} e^{\sigma w \sqrt{t}} e^{-w^2/2} dw - \frac{K}{\sqrt{2\pi}} \int_{w_0}^{\infty} e^{-w^2/2} dw$$

$$= x_0 e^{\mu t} e^{\sigma^2 t/2} \Pr\{N(0, 1) \ge w_0 - \sigma \sqrt{t}\} - K \Pr\{N(0, 1) \ge w_0\}$$

$$= x_0 e^{(\mu + \sigma^2)t/2} \Phi(\sigma \sqrt{t} - w_0) - K \Phi(-w_0)$$

$$= x_0 e^{\alpha t} \Phi(\sigma \sqrt{t} - w_0) - K \Phi(-w_0)$$

$$\therefore \quad c = x_0 \Phi(\sigma \sqrt{t} - w_0) - K e^{-\alpha t} \Phi(-w_0)$$
or
$$cx_0 \Phi\left(\frac{\sigma^2 t + \mu t - \log(K/x_0)}{\sigma \sqrt{t}}\right) - K e^{-\alpha t} \Phi\left(\frac{\mu t - \log(K/x_0)}{\sigma \sqrt{t}}\right)$$
(1.5)

where (1.5) is called the Black-Scholes option cost valuation formula

* With $\alpha = \mu + \sigma^2/2$, the value of w_0 can be written as: (which has no μ involved explicitly)

$$w_0 = \frac{\log(K/x_0) - \alpha t + \sigma^2 t/2}{\sigma \sqrt{t}}$$

1.3.3.3 Obtaining σ^2

- In practice, we observe the price process $\{X(t) = e^{Y(t)}\}$ for time $t \in [0, s]$, with a fixed interval h
 - $-N = \left| \frac{s}{h} \right|$ samples of Y(t) obtained
 - Define $W_k = Y(kh) Y((k-1)h), k = 1,...,N$ They are i.i.d. normal random variables with variance $h\sigma^2$
 - Sample variance: $S^2 = \sum_{i=1}^{N} \frac{(W_i \bar{W})^2}{N-1}$
 - $-\frac{(N-1)S^2}{(\sigma^2 h)}$ has a χ -squared distribution with N-1 degrees of freedom, hence

$$E\left\{\frac{(N-1)S^2}{(\sigma^2 h)}\right\} = N - 1$$
$$Var\left\{\frac{(N-1)S^2}{(\sigma^2 h)}\right\} = 2(N-1)$$

- * For random variable x in chi-squared distribution with k degree of freedom, $E\{x\} = k$ and $Var\{x\} = 2k$
- * We have: $E\{S^2/h\} = \sigma^2$ and $Var\{S^2/h\} = 2\sigma^4/(N-1)$ which means we can reduce the variance of S^2 by making h smaller (or equivalently, N larger), hence S^2 can be a better estimate of σ^2
- $-\lim_{h\to 0} S^2 = \sigma^2$. This is the way to obtain σ^2 for equation (1.5)

1.3.3.4 Martingale

- A stochastic process $\{X(t): t \ge 0\}$ is a martingale if $E\{X(t)|X(u): 0 \le u \le s < t\} = X(s)$, hence $\{e^{-\alpha t}X(t): t \ge 0\}$ is a martingale if $E\{e^{-\alpha t}X(t)|X(u): 0 \le u \le s\} = e^{-\alpha s}X(s)$, which results in no arbitrage possibilities
 - For a martingale process $\{Z(t): t \ge 0\}$ which governs the stock price, the cost of a option at time t with exercise price K should be:

$$c = E\left\{e^{-\alpha t} \left(e^{\alpha t} Z(t) - K\right)^{+}\right\}$$
$$= E\left\{\left(Z(t) - Ke^{-\alpha t}\right)^{+}\right\}$$

for no arbitrage. C.f. equations (1.3) and (1.4)

- Example of martingale: Let $\{N(t): t \ge 0\}$ be a Poisson process with rate λ , and Y_1, Y_2, \ldots is a sequence of independent random variables with common mean μ . Let

$$X(t) = x_0 \prod_{i=1}^{N(t)} Y_i$$

$$= x_0 \prod_{i=1}^{N(s)} Y_i \prod_{j=N(s)+1}^{N(t)} Y_j$$
 for $s < t$. Then $E\{X(t)|X(u): 0 \le u \le s\} = X(s)E\left\{\prod_{j=N(s)+1}^{N(t)} Y_j\right\}$ and
$$E\left\{\prod_{j=N(s)+1}^{N(t)} Y_j\right\} = \sum_{n=0}^{\infty} \mu^n \cdot \frac{(\lambda(t-s))^n e^{-\lambda(t-s)}}{n!}$$

$$= e^{-\lambda(t-s)} \sum_{n=0}^{\infty} \frac{(\lambda\mu(t-s))^n}{n!}$$

$$= e^{-\lambda(t-s)} e^{\lambda\mu(t-s)}$$

$$= e^{-\lambda(t-s)(1-\mu)}$$

$$\therefore E\{X(t)|X(u): 0 \le u \le s\} = e^{-\lambda(t-s)(1-\mu)} X(s)$$

$$E\{e^{-\lambda(\mu-1)t} X(t)|X(u): 0 \le u \le s\} = e^{-\lambda(\mu-1)s} X(s)$$

which means $\alpha = \lambda(\mu - 1)$.

1.3.4 Gaussian Process

- A Gaussian process is a process $\{X(t): t \ge 0\}$ with mean $\mu_X(t)$ and covariance function $C_X(t_1,t_2)$ such that $\{X(t_1),X(t_2),\ldots,X(t_n)\}$ is a multivariate normal distribution for any t_1,t_2,\ldots,t_n
 - For any vector $\mathbf{X} = (X(t_1), X(t_2), \dots, X(t_n))$ formed by any sampling of X(t), the p.d.f. is a multivariate normal distribution:

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{N/2} \sqrt{\det \Sigma_X}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mu_X)^T \Sigma_X^{-1} (\mathbf{x} - \mu_X)\right) \qquad \mathbf{x} \in \mathbb{R}^n$$
where $\mu_X = \begin{pmatrix} \mu_X(t_1) \\ \mu_X(t_2) \\ \vdots \\ \mu_X(t_n) \end{pmatrix}$

$$\Sigma_X = \begin{pmatrix} C_X(t_1, t_1) & C_X(t_1, t_2) & \cdots & C_X(t_1, t_n) \\ C_X(t_2, t_1) & C_X(t_2, t_2) & \cdots & C_X(t_2, t_n) \\ \vdots & \vdots & & \vdots \\ C_X(t_n, t_1) & C_X(t_n, t_2) & \cdots & C_X(t_n, t_n) \end{pmatrix}$$

- Obviously, Brownian motion process is a Gaussian process
- If X(t) is a standard Brownian motion process, we have

$$C_X(s,t) = Cov\{X(s), X(t)\}$$
= $Cov\{X(s), X(s) + X(t) - X(s)\}$
= $Cov\{X(s), X(s)\} + Cov\{X(t) - X(s)\}$
= $Cov\{X(s), X(s)\}$
= $Var\{X(s)\}$
= $Sov\{X(s), X(s)\}$

- For s < 1 conditioning on X(1) = 0, $E\{X(s)|X(1) = 0, s < 1\} = 0$. Hence for s < t < 1,

$$\begin{aligned} Cov\{X(s), & X(t)|X(1) = 0\} = E\{X(s)X(t)|X(1) = 0\} \\ &= E\{E\{X(s)X(t)|X(t), & X(1) = 0\}|X(1) = 0\} \\ &= E\{X(t) E\{X(s)|X(t)\}|X(1) = 0\} \\ &= E\{X(t) \frac{s}{t}X(t)|X(1) = 0\} \end{aligned}$$

$$= \frac{s}{t}E\left\{X^{2}(t)|X(1) = 0\right\}$$
$$= \frac{s}{t}t(1-t)$$
$$= s(1-t)$$

where the conditional mean and variance of Brownian motion process is applied.

1.3.5 References

- [5], Lecture 21-23
- [10], Chapter 2, "Normal Random Variables"; Chapter 3, "Geometric Brownian Motion"
- [11], Chapter 10, "Brownian Motion and Stationary Processes"
- [1]

Chapter 2

Stochastic Calculus

2.1 Stochastic Integral

• Given $\{X(t): t \ge 0\}$ is a standard Brownian motion, and f is a real function with continuous derivative defined on [a,b], the stochastic integral is defined as Riemann sum:

$$\int_{a}^{b} f(t)dX(t) \stackrel{\Delta}{=} \lim_{n \to \infty} \sum_{i=0}^{n} f(t_{i}) \left[X(t_{i+1}) - X(t_{i}) \right]$$
 (2.1)

with $a = t_0 < t_1 < \cdots < t_n < t_{n+1} = b$ is a partition of [a, b] such that

$$\lim_{n\to\infty} \max_{i} (t_{i+1} - t_i) = 0$$

- The definition of (2.1) is called the Reimann-Stieltjes integral or Lebesgue-Stieltjes integral of f with respect to X on [a,b]
- Compare: Reimann integral of f with respect to t on [a,b]: $\int_a^b f(t)dt = \lim_{n \to \infty} \sum_{i=0}^n f(t_i) \delta t_i$
- Integration by parts formula in stochastic integral:

$$\sum_{i=0}^{n} f(t_i) [X(t_{i+1}) - X(t_i)] = f(b)X(b) - f(a)X(a) - \sum_{i=0}^{n} X(t_{i+1}) [f(t_{i+1}) - f(t_i)]$$

$$\int_{a}^{b} f(t)dX(t) = f(b)X(b) - f(a)X(a) - \int_{a}^{b} X(t)df(t)$$
(2.2)

which (2.2) is usually taken as the definition to calculate the stochastic integral.

- Expectation is zero:

$$\begin{split} E\left\{\int_{a}^{b} f(t)dX(t)\right\} &= E\left\{f(b)X(b)\right\} - E\left\{f(a)X(a)\right\} - E\left\{\int_{a}^{b} X(t)df(t)\right\} \\ &= f(b)E\left\{X(b)\right\} - f(a)E\left\{X(a)\right\} - \int_{a}^{b} E\left\{X(t)\right\}df(t) \\ &= f(b)\cdot 0 - f(a)\cdot 0 - \int_{a}^{b} 0df(t) \\ &= 0 \end{split}$$

- Variation:

$$Var\left\{\sum_{i=0}^{n} f(t_{i}) \left[X(t_{i+1}) - X(t_{i})\right]\right\} = \sum_{i=0}^{n} f^{2}(t_{i}) Var\left\{X(t_{i+1}) - X(t_{i})\right\}$$
$$= \sum_{i=0}^{n} f^{2}(t_{i}) (t_{i+1} - t_{i})$$
$$\therefore Var\left\{\int_{a}^{b} f(t) dX(t)\right\} = \int_{a}^{b} f^{2}(t) dt$$

- The process $\{dX(t): t \ge 0\}$ is called the white noise and $\int_a^b f(t)dX(t)$ is the white noise transformation as it can be imagined that a time varying function f(t) travels through a white noise medium to yield the output at time b, $\int_a^b f(t)dX(t)$.
- Example: Particle in Brownian motion
 A particle moving with velocity v(t) in viscous fluid. The retardation is βv(t) and the acceleration due to Brownian motion is αX'(t) where {X(t): t≥0} is a standard Brownian motion

$$v'(t) = -\beta v(t) + \alpha X'(t)$$

$$e^{\beta t} \left[v'(t) + \beta v(t) \right] = \alpha e^{\beta t} X'(t)$$

$$\frac{d}{dt} \left[e^{\beta t} v(t) \right] = \alpha e^{\beta t} X'(t)$$

$$\therefore e^{\beta t} v(t) = v(0) + \alpha \int_0^t e^{\beta s} X'(s) ds$$

$$v(t) = v(0) e^{-\beta t} + \alpha \int_0^t e^{-\beta (t-s)} dX(s)$$

$$\therefore v(t) = v(0) e^{-\beta t} + \alpha \left[X(t) - \int_0^t X(s) \beta e^{-\beta (t-s)} ds \right]$$

which the last line is using (2.2).

2.2 Itô Calculus

- A standard Wiener process/Brownian motion W_t
 - Infinitesimal increments dW_t in time dt has density: $\frac{1}{\sqrt{2\pi dt}}e^{-dW_t^2/2dt}$
 - Mean of dW_t : $\overline{dW_t} = E\{dW_t\} = 0$
 - Variance of $dW_t = E\left\{(dW_t \overline{dW_t})^2\right\} = E\left\{(dW_t)^2\right\} = \overline{(dW_t)^2}$
 - * But according to the density function, the variance is dt, hence

$$\overline{(dW_t)^2} = dt \tag{2.3}$$

- A function of Wiener process: $f(t, W_t)$ has the differential

$$df(t, W_t) = f(t + dt, W_t + dW_t) - f(t, W_t)$$
(2.4)

• Taylor's expansion: [6]

$$f(x_1, \dots, x_n) = \sum_{j=0}^{\infty} \left\{ \frac{1}{j!} \left[\sum_{k=1}^{n} (x_k - a_k) \frac{\partial}{\partial x_k'} \right]^j (x_1', \dots, x_n') \right\}_{x_1' = a_1, \dots, x_n' = a_n}$$

$$f(x + \delta x, y + \delta y) = f(x, y) + \left[\frac{\partial f(x, y)}{\partial x} \delta x + \frac{\partial f(x, y)}{\partial y} \delta y \right]$$

$$+ \frac{1}{2!} \left[\frac{\partial^2 f(x, y)}{\partial x^2} (\delta x)^2 + 2 \frac{\partial^2 f(x, y)}{\partial x \partial y} \delta x \delta y + \frac{\partial^2 f(x, y)}{\partial y^2} (\delta y)^2 \right]$$

$$+ \frac{1}{3!} \left[\frac{\partial^3 f(x, y)}{\partial x^3} (\delta x)^3 + 3 \frac{\partial^3 f(x, y)}{\partial x^2 \partial y} (\delta x)^2 \delta y + 3 \frac{\partial^3 f(x, y)}{\partial x \partial y^2} \delta x (\delta y)^2 + \frac{\partial^3 f(x, y)}{\partial y^3} (\delta y)^3 \right]$$

$$+ \dots + \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} \frac{\partial^n f(x, y)}{\partial x^k \partial y^{n-k}} (\delta x)^k (\delta y)^{n-k} + \dots$$

- Hence tyhe Taylor's expansion of (2.4):

$$df(t, W_t) = -f(t, W_t) + f(t + dt, W_t + dW_t)$$

$$= -f(t, W_t) + f(t, W_t) + \frac{\partial f(t, W_t)}{\partial t} dt + \frac{\partial f(t, W_t)}{\delta W_t} dW_t$$

$$+\frac{1}{2}\frac{\partial^{2} f(t,W_{t})}{\partial t^{2}}(dt)^{2} + \frac{\partial^{2} f(t,W_{t})}{\partial t \partial W_{t}}dtdW_{t} + \frac{1}{2}\frac{\partial^{2} f(t,W_{t})}{\partial W_{t}^{2}}(dW_{t})^{2} + \cdots$$

$$= \frac{\partial f(t,W_{t})}{\partial t}dt + \frac{\partial f(t,W_{t})}{\partial W_{t}}dW_{t} + \frac{1}{2}\frac{\partial^{2} f(t,W_{t})}{\partial t^{2}}(dt)^{2} + \frac{\partial^{2} f(t,W_{t})}{\partial t \partial W_{t}}dtdW_{t} + \frac{1}{2}\frac{\partial^{2} f(t,W_{t})}{\partial W_{t}^{2}}(dW_{t})^{2} + \cdots$$

* Substituting (2.3), the mean behavior of $df(t, W_t)$ is therefore:

$$\begin{split} df(t,W_t) &= \frac{\partial f(t,W_t)}{\partial t} dt + \frac{\partial f(t,W_t)}{\delta W_t} dW_t + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial t^2} (dt)^2 + \frac{\partial^2 f(t,W_t)}{\partial t \partial W_t} dt dW_t + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} (dW_t)^2 + \cdots \\ &= \frac{\partial f(t,W_t)}{\partial t} dt + \frac{\partial f(t,W_t)}{\delta W_t} dW_t + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial t^2} (dt)^2 + \frac{\partial^2 f(t,W_t)}{\partial t \partial W_t} dt dW_t + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} dt + \cdots \\ &\approx \frac{\partial f(t,W_t)}{\partial t} dt + \frac{\partial f(t,W_t)}{\delta W_t} dW_t + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} dt \\ &= \left[\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right] dt + \frac{\partial f(t,W_t)}{\delta W_t} dW_t \end{split}$$

• Chain rule:

- Let $dx(t, W_t) = a(x, t)dt + b(x, t)dW_t$
- For $f(x(t, W_t))$,

$$df(x(t,W_t)) = \left[a(x,t) \frac{\partial f(x)}{\partial x} + \frac{1}{2} b^2(x,t) \frac{\partial^2 f}{\partial x^2} \right] dt + b(x,t) \frac{\partial f}{\partial x} dW_t$$

$$\therefore dx(t,W_t) = \left[\frac{\partial x(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 x(t,W_t)}{\partial W_t^2} \right] dt + \frac{\partial x(t,W_t)}{\delta W_t} dW_t$$

$$\therefore df(x(t,W_t)) = \left[\left(\frac{\partial x(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 x(t,W_t)}{\partial W_t^2} \right) \frac{\partial f(x)}{\partial x} + \frac{1}{2} \left(\frac{\partial x(t,W_t)}{\delta W_t} \right)^2 \frac{\partial^2 f(x)}{\partial x^2} \right] dt + \frac{\partial x(t,W_t)}{\delta W_t} \frac{\partial f(x)}{\partial x} dW_t$$

- This is called the one-dimensional Itô's formula
- Traditional product rule:

$$\begin{split} d(f(t)g(t)) &= f(t+dt)g(t+dt) - f(t)g(t) \\ &= [f(t+dt) - f(t)]g(t+dt) + f(t)[g(t+dt) - g(t)] \\ &= [f(t+dt) - f(t)][g(t+dt) - g(t)] + [f(t+dt) - f(t)]g(t) + f(t)[g(t+dt) - g(t)] \\ &= df(t)dg(t) + g(t)df(t) + f(t)dg(t) \\ &= \frac{df(t)}{dt}\frac{dg(t)}{dt}(dt)^2 + \frac{df(t)}{dt}g(t)dt + \frac{dg(t)}{dt}f(t)dt \end{split}$$

- If dt is infinitesimal, $(dt)^2 = 0$ and we get

$$d(f(t)g(t)) = \frac{df(t)}{dt}g(t)dt + \frac{dg(t)}{dt}f(t)dt$$

• Product rule in Itô's calculus:

$$d(f(t,W_t)g(t,W_t)) = f(t+dt,W_t+dW_t)g(t+dt,W_t+dW_t) - f(t,W_t)g(t,W_t)$$

$$= [f(t+dt,W_t+dW_t) - f(t,W_t)]g(t+dt,W_t+dW_t) + f(t,W_t)[g(t+dt,W_t+dW_t) - g(t,W_t)]$$

$$= [f(t+dt,W_t+dW_t) - f(t,W_t)][g(t+dt,W_t+dW_t) - g(t,W_t)]$$

$$+ [f(t+dt,W_t+dW_t) - f(t,W_t)]g(t,W_t) + f(t,W_t)[g(t+dt,W_t+dW_t) - g(t,W_t)]$$

$$= df(t,W_t)dg(t,W_t) + g(t,W_t)df(t,W_t) + f(t,W_t)dg(t,W_t)$$

$$\therefore df(t,W_t) = \left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2}\frac{\partial^2 f(t,W_t)}{\partial W_t^2}\right)dt + \frac{\partial f(t,W_t)}{\delta W_t}dW_t$$

$$dg(t,W_t) = \left(\frac{\partial g(t,W_t)}{\partial t} + \frac{1}{2}\frac{\partial^2 g(t,W_t)}{\partial W_t^2}\right)dt + \frac{\partial g(t,W_t)}{\delta W_t}dW_t$$

$$\therefore d(f(t,W_t)g(t,W_t)) = \left[\left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2}\frac{\partial^2 f(t,W_t)}{\partial W_t^2}\right)dt + \frac{\partial f(t,W_t)}{\delta W_t}dW_t\right]$$

$$\begin{split} & \left[\left(\frac{\partial g(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 g(t,W_t)}{\partial W_t^2} \right) dt + \frac{\partial g(t,W_t)}{\delta W_t} dW_t \right] \\ & + \left[\left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right) dt + \frac{\partial f(t,W_t)}{\delta W_t} dW_t \right] g(t,W_t) \\ & + \left[\left(\frac{\partial g(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 g(t,W_t)}{\partial W_t^2} \right) dt + \frac{\partial g(t,W_t)}{\delta W_t} dW_t \right] f(t,W_t) \\ & = \left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right) \left(\frac{\partial g(t,W_t)}{\partial W_t^2} + \frac{1}{2} \frac{\partial^2 g(t,W_t)}{\partial W_t^2} \right) (dt)^2 \\ & + \frac{\partial f(t,W_t)}{\delta W_t} \left(\frac{\partial g(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 g(t,W_t)}{\partial W_t^2} \right) dt dW_t \\ & + \left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right) \frac{\partial g(t,W_t)}{\delta W_t} dt dW_t + \frac{\partial f(t,W_t)}{\delta W_t} \frac{\partial g(t,W_t)}{\delta W_t} (dW_t)^2 \\ & + \left[\left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right) dt + \frac{\partial f(t,W_t)}{\delta W_t} dW_t \right] g(t,W_t) \\ & + \left[\left(\frac{\partial g(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 g(t,W_t)}{\partial W_t^2} \right) dt + \frac{\partial g(t,W_t)}{\delta W_t} dW_t \right] f(t,W_t) \\ & = \frac{\partial f(t,W_t)}{\delta W_t} \frac{\partial g(t,W_t)}{\delta W_t} (dW_t)^2 + \left[\left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right) dt + \frac{\partial f(t,W_t)}{\delta W_t} dW_t \right] f(t,W_t) \\ & = \frac{\partial f(t,W_t)}{\partial t} \frac{\partial g(t,W_t)}{\partial W_t} (dW_t)^2 \\ & + \left[\left(\frac{\partial g(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 g(t,W_t)}{\partial W_t^2} \right) dt + \frac{\partial g(t,W_t)}{\delta W_t} dW_t \right] f(t,W_t) \\ & = \frac{\partial f(t,W_t)}{\delta W_t} \frac{\partial g(t,W_t)}{\partial W_t} (dW_t)^2 \\ & + \left[\left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right) dt + \frac{\partial g(t,W_t)}{\delta W_t} dW_t \right] f(t,W_t) \\ & = \frac{\partial f(t,W_t)}{\delta W_t} \frac{\partial g(t,W_t)}{\partial W_t} (dW_t)^2 \\ & + \left[\left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right) g(t,W_t) + \left(\frac{\partial g(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 g(t,W_t)}{\partial W_t^2} \right) f(t,W_t) \right] dt \\ & + \left[\left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right) g(t,W_t) + \left(\frac{\partial g(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 g(t,W_t)}{\partial W_t^2} \right) f(t,W_t) \right] dt \\ & + \left[\left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right) g(t,W_t) + \left(\frac{\partial g(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 g(t,W_t)}{\partial W_t^2} \right) f(t,W_t) \right] dt \\ & + \left[\left(\frac{\partial f(t,W_t)}{\partial t} + \frac{\partial f(t,W_t)}{\partial t} \right) \frac{\partial G(t,W_t)}{\partial t} + \frac{\partial G(t,W_t)}{\partial$$

which yields the following Itô's rule:

$$d(f(t,W_t)g(t,W_t)) = \left[\left(\frac{\partial f(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(t,W_t)}{\partial W_t^2} \right) g(t,W_t) + \left(\frac{\partial g(t,W_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 g(t,W_t)}{\partial W_t^2} \right) f(t,W_t) + \frac{\partial f(t,W_t)}{\delta W_t} \frac{\partial g(t,W_t)}{\delta W_t} \right] dt + \left[\frac{\partial f(t,W_t)}{\delta W_t} g(t,W_t) + \frac{\partial g(t,W_t)}{\delta W_t} f(t,W_t) \right] dW_t$$

2.3 Stochastic Differential Equations

• Stochastic differential equations is of the form:

$$dX(t) = f(X(t))dt + \sum_{i=1}^{n} g_i(X(t))dN_i(t)$$

where $\{X(t)\}$ is a stochastic process described by the stochastic differential equation, $N_i(t)$ are Poisson counters that drives X(t), and f(x), $g_i(x)$ are real-valued functions

- Poisson counter $N_i(t)$ with $dN_i(t) = 0$ if no event i occur at t and $dN_i(t) = 1$ if event i occur at t
- Properties of stochastic differential equations
 - 1. If h(t) = h(X(t)) is a function of a stochastic process, then (without proof)

$$dh(t) = \frac{dh(t)}{dt} \left(f(X(t)) dt + \sum_{i=1}^{n} g_i(X(t)) dN_i(t) \right)$$
$$= \frac{dh(t)}{dt} f(X(t)) dt + \sum_{i=1}^{n} \frac{dh(t)}{dt} g_i(X(t)) dN_i(t)$$

$$= \frac{dh(t)}{dt} f(X(t)) dt + \sum_{i=1}^{n} [h(X(t) + g_i(X(t))) - h(X(t))] dN_i(t)$$
 (2.5)

2. Let λ_i be the rate associated with $N_i(t)$, then

$$\frac{dE[X(t)]}{dt} = E[f(X(t))] + \sum_{i=1}^{n} \lambda_i E[g_i(X(t))]$$
 (2.6)

- Example of using stochastic differential equations: Analyzing M/G/1 queue
 - Arrival is represented by Poisson counting process $\{N(t)\}$ with arrival rate λ , general service time X
 - Let W(t) be the amount of work in the system (which can also be the queueing time of the customer arriving at t), then

$$dW(t) = \begin{cases} -dt + XdN(t) & W(t) > 0 \\ XdN(t) & W(t) = 0 \end{cases}$$
$$= -1\{W(t) > 0\}dt + XdN(t)$$

- By (2.6), we have

$$\frac{dE[W(t)]}{dt} = -E[\mathbf{1}\{W(t) > 0\}] + \lambda E[X]$$
$$= -\Pr[W(t) > 0] + \lambda E[X]$$

– If the system is stable, $\rho \stackrel{\Delta}{=} \lambda E[X] < 1$ and dE[W(t)]/dt = 0, hence

$$\frac{dE[W(t)]}{dt} = 0$$

$$\therefore -\Pr[W(t) > 0] + \lambda E[X] = 0$$

$$\Pr[W(t) > 0] = \lambda E[X] = \rho$$

- Similarly, we have:

$$\begin{split} dW^2(t) &= 2W(t)dW(t) \\ &= -2W(t)\mathbf{1}\{W(t) > 0\}dt + 2W(t)XdN(t) \\ &= -2W(t)\mathbf{1}\{W(t) > 0)dt + \left((W(t) + X)^2 - W^2(t)\right)dN(t) \qquad \text{(why?)} \\ \frac{dE[W^2(t)]}{dt} &= -2E[W(t)\mathbf{1}\{W(t) > 0\}] + \lambda \left(2E[W(t)X] + E[X^2]\right) \\ &= -2E[W(t)] + \lambda \left(2E[W(t)]E[X] + E[X^2]\right) \\ &= -2E[W(t)] + 2\rho E[W(t)] + \lambda E[X^2] \end{split}$$

– In steady state, $dE[W^2(t)]/dt = 0$ which yields the Pollaczek-Khinchin formula

$$\begin{split} 0 &= -2E[W(t)] + 2\rho E[W(t)] + \lambda E[X^2] \\ 2(1-\rho)E[W(t)] &= \lambda E[X^2] \\ E[W(t)] &= E[W_q] = \frac{\lambda E[X^2]}{2(1-\rho)} \end{split}$$

2.4 References

- [4]
- [10], Chapter 7, "The Black-Scholes Formula"
- [11], Chapter 10, "Brownian Motion and Stationary Processes"
- [15]

Chapter 3

Stochastic Processes

3.1 Balance Equations

3.1.1 The queue

- Interarrival and service time distributions are both Markovian
- Probability measure: $p_n(t)$ defined as the probability that there are n units in the system at time t
- Considering $t \rightarrow t + \delta t$ where δt is really a short time
 - Can be any of the following:
 - 1. No arrival and no departure
 - 2. Only an arrival takes place
 - 3. Only a departure takes place
 - 4. Both departure and arrival occurs
 - Probability of an arrival occur in interval δt : $\lambda \delta t$
 - Probability of a departure occur in interval δt : $\mu \delta t$
 - Hence for $n \ge 0$,

$$\begin{array}{lcl} p_{n}(t+\delta t) & = & p_{n}(t)(1-\lambda_{n}\delta t)(1-\mu_{n}\delta t) \\ & & +p_{n}(t)(\lambda_{n}\delta t)(\mu_{n}\delta t) \\ & & +p_{n+1}(t)(\mu_{n+1}\delta t)(1-\lambda_{n+1}\delta t) \\ & & +p_{n-1}(t)(\lambda_{n-1}\delta t)(1-\mu_{n-1}\delta t) \\ & & +o(\delta t) \end{array}$$

and for n = 0,

$$p_0(t+\delta t) = p_0(t)(1-\lambda_0\delta t) + p_1(t)(\mu_1\delta t)(1-\lambda_1\delta t) + o(\delta t)$$

– Take differentiation on $p_n(t)$:

$$\frac{d}{dt}p_n(t) = -(\lambda_n + \mu_n)p_n(t) + \lambda_{n-1}p_{n-1}(t) + \mu_{n+1}p_{n+1}(t)$$

$$\frac{d}{dt}p_0(t) = -\lambda_0 p_0(t) + \mu_1 p_1(t)$$

- Steady state probability is defined as $\frac{d}{dt}p_n(t) = 0$.
 - Hence the above differential equations become the balance equations

3.1.2 References

• [12] Sharma (1990), Chapter 1

3.2 Stochastic processes

3.2.1 Birth-Death Process

• $\{N(t): t \ge 0\}$ is a birth-death process if

$$\Pr[N(t+\delta t)=k|N(t)=j] = \begin{cases} \lambda_j \delta t & k=j+1\\ \mu_j \delta t & k=j-1\\ 0 & |k-j| \geq 2 \end{cases} \quad j,k=0,1,\dots$$

- Birth-death process is a Markovian model, as its state depends only on the previous state
- Balance equation:

$$(\lambda_j + \mu_j)p_j = \lambda_{j-1}p_{j-1} + \mu_{j+1}p_{j+1}$$

 $\lambda_0 p_0 = \mu_1 p_1$

- Solution:
$$p_j = \frac{\lambda_0 \lambda_1 \cdots \lambda_{j-1}}{\mu_1 \mu_2 \cdots \mu_j}$$
 and $p_0 = \left(1 + \sum_{j=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{j-1}}{\mu_1 \mu_2 \cdots \mu_j}\right)^{-1}$

3.2.2 Renewal process

• Renewal theory is describing the process of replacement. In a system, component *N* is on its duty cycle, and it will fail some time. Once it is failed, component *N* + 1 will replace its role. Renewal theory is describing the partial sum:

$$S_N = X_1 + X_2 + \cdots + X_N$$

where each of X_i is the random variable of the lifetime of component i.

- Number of renewals: $U(t) = \max\{N \ge 0 : S_N \le t\}$ is the number of renewals in [0,t]
- If the lifetime of component is exponential, i.e. X_i has p.d.f $\lambda e^{-\lambda t}$, and the time of the k-th renewal is in Gamma distribution:

$$f_k(t) = e^{-\lambda t} \lambda^k \frac{t^{k-1}}{(k-1)!}$$

• Alternatively, the probability that there are exactly n renewals in time interval [0,t) is in Poisson distribution:

$$\Pr_{[0,t)}\{N=n\} = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

• The expected number of renewals per unit time equals to mean lifetime:

$$\lim_{t\to\infty}\frac{U(t)}{t}=\lambda$$

3.2.3 Reference

• [11] Ross (2003), Chapter 5, "The Exponential Distribution and the Poisson Process"; Chapter 6, "Continuous-Time Markov Chains"

21

• [2] Akimaru and Konosuke (1999), Chapter 2, "Markovian Models"

Chapter 4

Queueing Theory

4.1 Kendall Notation

- To abbreviate the description of a general queueing system
- A/B/C
 - A, B: interarrival and service time distributions
 - C: number of channels or service counters
- A/B/C/D/E
 - D: Buffer size, i.e. system capacity. Tandem queue means D $\neq \infty$
 - E: Customer population
- Common symbols for distributions:
 - M: Markovian distribution, i.e. exponential
 - D: Deterministic distribution
 - $-E_k$: Erlang-k distribution
 - H_k : Hyper-exponential of order k
 - G: General distribution
 - GI: General distribution with independent inter-arrival or service times (renewal)
 - MMPP: Markov modulated Poisson process (non-renewal)

4.2 Different Queues

4.2.1 M/M/1

- Birth-Death process with state-indepentent arrival (birth) rate λ and departure (death) rate μ
- Balance equation for system state (population in system):

$$\lambda \pi_{n-1} = \mu \pi_n$$

$$\pi_n = \frac{\lambda}{\mu} \pi_{n-1} = \rho \pi_{n-1}$$

$$\therefore \quad \pi_n = \rho^n \pi_0$$

$$\sum_{n=0}^{\infty} \rho^n \pi_0 = 1$$

$$\pi_0 = 1 - \rho$$

$$\pi_n = \rho^n (1 - \rho)$$

- Expected population in system: $E[N] = \sum_{k=0}^{n} k\pi_k = \rho/(1-\rho)$
 - Variance: $Var[N] = \rho/(1-\rho)^2$
- Expected waiting time in queue for the (m+1)-th user: $E[W_q|m] = mE[S] = m/\mu$
 - Expected waiting time: $E[W_q] = \sum_{k=0}^{\infty} \pi_k E[W_q | m = k] = \frac{1}{\mu} \sum_{k=0}^{\infty} k \pi_k = \frac{1}{\mu} \frac{\rho}{1 \rho}$
 - * Variance: $Var[W_q] = \frac{2\rho \rho^2}{\mu^2 (1 \rho)^2}$
 - Probability of not waiting: $Pr[W_q = 0] = 1 \rho$
 - Density function for waiting time t given k customers in front (Erlang-k distribution): $p(t) = \frac{e^{-\lambda t} \lambda^k t^{k-1}}{(k-1)!}$
 - Waiting time distribution:

$$\begin{split} \Pr[W_q \leq X] &= \Pr[W_q = 0] + \Pr[0 < W_q \leq X] \\ &= (1 - \rho) + \sum_{k=0}^{\infty} \left(\Pr[N = k] \Pr[E_k \leq X] \right) \\ &= (1 - \rho) + \sum_{k=0}^{\infty} \left((1 - \rho) \rho^k \int_0^X \frac{e^{-\mu t} \mu^k t^{k-1}}{(k-1)!} dt \right) \\ &= 1 - \rho^{-(\mu - \lambda)X} \\ \Pr[W_q = t] &= \frac{d}{dt} \left(1 - \rho^{-(\mu - \lambda)t} \right) \\ &= \rho (\mu - \lambda) e^{-(\mu - \lambda)t} \end{split}$$

- Expected queue length (by Little's law): $E[N_q] = \lambda E[W_q] = \frac{\rho^2}{1-\rho}$
- Expected sojourn time in system for the (m+1)-th user: $E[W] = E[W_q] + \frac{1}{\mu} = \frac{1}{\mu} \frac{1}{1-\rho} = \frac{1}{\mu-\lambda}$
 - Variance: $Var[W] = \frac{1}{(\mu \lambda)^2}$
 - Sojourn time distribution: $f_T(t) = (\mu \lambda)e^{-(\mu \lambda)t}$
 - c.d.f.: $F_T(t) = 1 e^{-(\mu \lambda)t}$
 - c.d.f. of waiting time: $F_W = 1 \rho e^{-(\mu \lambda)t}$
- PASTA: Poisson Arrivals See Time Average
 - Poisson arrival with rate λ
 - System state at time t given an arrival occur in $(t, t + \Delta t)$: M(t)
 - System state at time t: N(t)
 - PASTA:

$$Pr\{M(t) = n\} = Pr\{N(t) = n | \text{arrival in } (t, t + \Delta t)\}$$

$$= \frac{Pr\{N(t) = n\} Pr\{\text{arrival in } (t, t + \Delta t)\}}{Pr\{\text{arrival in } (t, t + \Delta t)\}}$$

$$= Pr\{N(t) = n\}$$

- Burke's Theorem: Departure process of M/M/1 queue is Poisson with rate λ independent of arrival process
 - Poisson input implies Poisson output

4.2.2 M/G/1 Queue with FCFS discipline

- Poisson arrival with λ and i.i.d. service time X with density function $f_X(x)$
- Analysis using Embedded Markov chain approach:
 - Let Y_n be the number of customers in the system immediately after the departure of customer n
 - Let A_n be the number of arrivals during the service time of customer n
 - Markov chain:

$$Y_{n+1} = \begin{cases} Y_n - 1 + A_{n+1} & Y_n > 0 \\ A_{n+1} & Y_n = 0 \end{cases}$$
$$= Y_n + A_{n+1} - U(Y_n)$$

where U(x) is the unit step function such that U(x) = 1 only if x > 0 and U(x) = 0 otherwise.

- * This markov chain is ergodic with period $\rho = \lambda E[X] < 1$
- Steady value of Y_n : Taking limit n → ∞

$$Y_{n+1} = Y_n + A_{n+1} - U(Y_n)$$

$$\therefore \lim_{n \to \infty} (E[Y_{n+1}]) = \lim_{n \to \infty} (E[Y_n] + E[A_{n+1}] - E[U(Y_n)])$$

$$E[Y] = E[Y] + E[A] - E[U]$$

$$E[U] = E[A]$$

$$= \lambda \cdot \frac{1}{\mu} = \rho$$

- Expected value of Y^2 :

$$\begin{split} E[Y_{n+1}^2] &= E[Y_n^2 + A_{n+1}^2 + U(Y_n)^2 + 2\left(Y_n A_{n+1} - Y_n U(Y_n) - A_{n+1} U(Y_n)\right)] \\ &= E[Y_n^2] + E[A_{n+1}^2] + E[U(Y_n)^2] + 2\left(E[Y_n A_{n+1}] - E[Y_n U(Y_n)] - E[A_{n+1} U(Y_n)]\right) \\ E[Y^2] &= E[Y^2] + E[A^2] + E[U^2] + 2E[YA] - 2E[YU] - 2E[AU] \\ &= E[Y^2] + E[A^2] + E[U] + 2E[Y]E[A] - 2E[Y] - 2E[A]E[U] \\ 0 &= E[A^2] + 2E[Y]\left(E[A] - 1\right) + E[U]\left(1 - 2E[A]\right) \\ &= E[A^2] + 2E[Y]\left(\rho - 1\right) + \rho\left(1 - 2\rho\right) \\ 2E[Y](1 - \rho) &= E[A^2] + \rho - 2\rho^2 \\ E[Y] &= \frac{E[A^2] + \rho - 2\rho^2}{2(1 - \rho)} = \frac{E[A^2] + 2\rho - 2\rho^2 - \rho}{2(1 - \rho)} = \frac{E[A^2] + 2\rho(1 - \rho) - \rho}{2(1 - \rho)} \\ &= \rho + \frac{E[A^2] - \rho}{2(1 - \rho)} \end{split}$$

- * $E[U^2] = E[U]$ as $1^2 = 1$ and $0^2 = 0$
- * Y and A are independent, hence E[YA] = E[Y]E[A]
- * E[YU] = E[Y] as U = 0 only if Y = 0 and U = 1 if $Y \neq 0$
- * A is defined only if there is a user to serve, hence E[AU] = E[A]E[U]
- Z-transform of Pr[A = n] is the Laplace transform of $f_X(t)$ with $s = \lambda(1 z)$:

$$A(z) = \sum_{n=0}^{\infty} \Pr[A = n] z^n$$

$$= \sum_{n=0}^{\infty} z^n \int_0^{\infty} \Pr[A = n | X = t] f_X(t) dt$$

$$= \sum_{n=0}^{\infty} z^n \int_0^{\infty} \frac{(\lambda t)^n e^{-\lambda t}}{n!} f_X(t) dt$$

$$= \int_0^{\infty} \sum_{n=0}^{\infty} \frac{(\lambda t z)^n}{n!} e^{-\lambda t} f_X(t) dt$$

$$= \int_0^\infty e^{\lambda t z} e^{-\lambda t} f_X(t) dt$$
$$= \int_0^\infty e^{-\lambda t (1-z)} f_X(t) dt$$
$$= F_X(\lambda (1-z))$$

 $-E[A^2]$ can be obtained by A(z):

$$E[A^{2}] = A''(z)|_{z=1} + A'(z)|_{z=1}$$
$$= \lambda^{2} E[X^{2}] + \lambda E[X]$$
$$= \lambda^{2} E[X^{2}] + \rho$$

– Substitute $E[A^2]$ to E[Y] and obtain the Pollaczek-Khinchin formula:

$$E[Y] = \rho + \frac{E[A^2] - \rho}{2(1 - \rho)}$$
$$= \rho + \frac{\lambda^2 E[X^2]}{2(1 - \rho)}$$

4.2.3 Waiting time in M/G/1 queue using Little's Law

- Assume the average service time to be \bar{X} and the customers are arrived in Poisson process with rate λ
- With respect to customer i, we define:
 - $-W_i$: Waiting time in queue
 - R_i : Residual service time as seen by customer i. That is the time for the on-going service to complete by the epoch customer i arrives. $R_i = 0$ if the queue is empty.
 - $-X_i$: Service time received
 - $-N_i$: Number of customers already in queue upon the arrival of customer i
- Now we have:

$$W_i = R_i + \sum_{j=i-N_i}^{i-1} X_j$$

$$E[W_i] = E[R_i] + E\left\{\sum_{j=i-N_i}^{i-1} X_j\right\}$$

$$= E[R_i] + E\left\{\sum_{j=i-N_i}^{i-1} E[X_j]\right\}$$

$$= E[R_i] + \bar{X}E[N_i]$$

$$\therefore W_q = R + \bar{X}N_q$$

• By Little's law,

$$N_q = \lambda W_q$$

$$\therefore W_q = R + \bar{X}(\lambda W_q)$$

$$= R + (\lambda \bar{X})W_q$$

$$W_q = \frac{R}{1 - \lambda \bar{X}} = \frac{R}{1 - \rho}$$

4.2.4 Alternative way to derive Pollaczek-Khinchin formula in M/G/1 queue

- Let the residue service time at t to be r(t) and there are N(t) customers ever completed service by t
- Time-averaged residue service time:

$$R = \lim_{t \to \infty} \frac{1}{t} \int_0^t r(\tau) d\tau = \lim_{t \to \infty} \frac{1}{t} \sum_{n=1}^{N(t)} \frac{X_n^2}{2}$$

$$= \lim_{t \to \infty} \left(\sum_{n=1}^{N(t)} \frac{N(t)}{t} \cdot \frac{X_n^2/2}{N(t)} \right)$$

$$= \lim_{t \to \infty} \left(\frac{N(t)}{t} \cdot \frac{\sum_{n=1}^{N(t)} X_n^2}{N(t)} \cdot \frac{1}{2} \right)$$

$$= \frac{1}{2} \cdot \lim_{t \to \infty} \frac{N(t)}{t} \cdot \lim_{t \to \infty} \frac{\sum_{n=1}^{N(t)} X_n^2}{N(t)}$$

$$\therefore \quad R = \frac{1}{2} \lambda E[X^2]$$

• Hence the mean waiting time in queue:

$$W_q = \frac{R}{1 - \rho}$$
$$= \frac{\lambda E[X^2]}{2(1 - \rho)}$$

– Even if $\rho < 1$, $W_q = \infty$ is possible if $E[X^2] = \infty$, i.e. variance of service time is too large

- Sojourn time:
$$W = \bar{X} + W_q = \bar{X} + \frac{\lambda E[X^2]}{2(1-\rho)}$$

- Queue length:
$$N_q = \lambda W_q = \frac{\lambda^2 E[X^2]}{2(1-\rho)}$$

- Population in system:
$$N = \lambda W = \lambda \bar{X} + \frac{\lambda^2 E[X^2]}{2(1-\rho)} = \rho + \frac{\lambda^2 E[X^2]}{2(1-\rho)}$$

• P-K formula: If the service model is known and we can calculate $E[X^2]$, we can obtain W_q

- M/M/1:
$$E[X^2] = \frac{2}{\mu} \quad \Rightarrow \quad W_q = \frac{\rho}{\mu(1-\rho)}$$

- M/D/1:
$$E[X^2] = \frac{1}{\mu^2} \Rightarrow W_q = \frac{\rho}{2\mu(1-\rho)}$$

4.2.5 Mean-Value Analysis of M/G/1 FIFO queue

• Mean value analysis:

$$E[W_q] = E[N_q]E[X] + E[R]$$

where W_q is the queueing time, N_q is the population in queue, X is the service time, and R is the remaining service time where an empty queue yields R = 0.

- The equation means the expected waiting time for a newly arriving customer is the sum of the expected remaining service time of the customer in service, plus the expected service time to finish all customers in front
- If the service time is exponential, $E[R] = \rho \cdot \frac{1}{\mu}$. Using Little's Law: $E[N_q] = \lambda E[W_q]$,

$$E[W_q] = E[N_q]E[X] + E[R]$$
$$= \lambda E[W_q] \frac{1}{\mu} + \rho \frac{1}{\mu}$$

$$(1 - \rho)E[W_q] = \rho \frac{1}{\mu}$$
$$E[W_q] = \frac{\rho}{1 - \rho} \frac{1}{\mu}$$

• If the service is generally distributed, $E[R] = \rho \left(\frac{E[X]}{2} + \frac{\sigma_X^2}{2E[X]} \right)$. Hence

$$\begin{split} E[W_q] &= E[N_q]E[X] + E[R] \\ &= \lambda E[W_q]E[X] + \rho \left(\frac{E[X]}{2} + \frac{\sigma_X^2}{2E[X]}\right) \\ &= \rho E[W_q] + \rho \frac{E[X]}{2} + \frac{\lambda \sigma_X^2}{2} \\ (1 - \rho)E[W_q] &= \frac{\rho E[X] + \lambda \sigma_X^2}{2} \\ E[W_q] &= \frac{\rho E[X] + \lambda \sigma_X^2}{2(1 - \rho)} \end{split}$$

and the mean sojourn time is $E[W] = E[W_q] + E[X]$.

4.2.6 General queue: GI/G/c

- Multiserver queue with $c \ge 1$ identical servers
- Customers: General independent interarrival times with p.d.f. A(t), arrival rate is λ
 - Expected service times: E(S)
 - Offered load: $\lambda E(S)$
 - Server utilization: $\rho = \lambda E(s)/c$
- Random variables:
 - -N(t): No. of customers in the system at time t, including those in service
 - $N_a(t)$: No. of customers in the queue at time t
 - D_n : Delay in queue of the n-th customer
 - R_n : Sojourn time of the *n*-th customer
 - -V(t): The workload at time t, i.e., the sum of service times of all customers in queue plus the sum of remaining service times of the customers in service at time t
- Definitions:
 - Probability of system state: $p_j = \lim_{t \to \infty} \Pr\{N(t) = j\}$
 - Waiting time in queue: $W_q(x) = \lim_{n \to \infty} \Pr\{D_n \le x\}$, also, waiting time in system: $W(x) = \lim_{n \to \infty} \Pr\{R_n \le x\}$
- Averages in the long-run:

$$-\lim_{t\to\infty} \frac{1}{t} \int_0^t N(u) du = E(N), \text{ and } \lim_{t\to\infty} \frac{1}{t} \int_0^t N_q(u) du = E(N_q)$$

$$-\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n D_k = E(W_q), \text{ and } \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n R_k = E(W)$$

$$-\lim_{t\to\infty} \frac{1}{t} \int_0^t V(u) du = E(V)$$

• Little's Law:

$$-E(N_q) = \lambda E(W_q)$$
, and $E(N) = \lambda E(W)$

$$- E(\# \text{ busy servers}) = \lambda E(S)$$

* If p_i is the probability of having j users in the system,

$$E(\text{\# busy servers}) = \lambda E(S)$$

$$= \sum_{j=0}^{c-1} j p_j + c \sum_{j=c}^{\infty} p_j$$

$$\lambda E(S) = \sum_{j=0}^{c-1} j p_j + c \left(1 - \sum_{j=c}^{\infty} p_j\right)$$

- Expected amount of work in system: E(V)
 - Define function: v(t) as the remaining amount of service to complete for a particular user
 - * In waiting time, v(t) = S as the amount of service S is never started
 - * Receiving service for amount of time x, v(t) = S x
 - * Just completed service: v(t) = S S = 0
 - $-E(V) = \lambda E(\int_0^{W_q+S} v(t)dt)$
 - By Little's law, the amount of work in the system is the product of arrival rate and the amount of work due per user

$$\begin{split} E(V) &= \lambda E(\int_0^{W_q + S} v(t) dt) \\ &= \lambda E(W_q S + \int_0^S (S - x) dt) \\ &= \lambda E(W_q) E(S) + E(\frac{1}{2}S^2) \end{split}$$

- Hence, $E(V) = \lambda E(W_q) E(S) + \frac{1}{2} E(S^2)$

4.2.7 References

- [14] Towsley (2002)
- [13] Tijms (1986), Chapter 4, Section 4.1
- [7] Nain (1998), Section 3
- [9] Prabhu (1997), Chapter 2, "Markovian Queueing Systems"; Chapter 3, "The Busy Period, Output and Queues in Series"

4.3 Markovian Delay Systems

4.3.1 M/M/c queue with infinite buffer: Delay system

- Service time: $E(S) = 1/\mu$
- Utilization: $\rho = \lambda E(S)/c$
- Time-average probabilities: (same as customer-average probabilities)

$$\lambda p_{j-1} = \min(j, c) \mu \quad j = 1, 2, \dots$$

$$\therefore p_j = \begin{cases} \frac{(c\rho)^j}{j!} p_0 & 0 \le j \le c - 1\\ \frac{(c\rho)^j}{c! c^{j-c}} p_0 & j \ge c \end{cases}$$

$$p_0 = \begin{cases} \sum_{k=0}^{c-1} \frac{(c\rho)^k}{k!} + \frac{(c\rho)^c}{c! (1-\rho)} \end{cases}^{-1}$$

- Delay probability: $\Pi_W = \sum_{j=c}^{\infty} p_j = \frac{(c\rho)^c}{c!(1-\rho)} p_0$
 - Erlang-C, a.k.a. Erlang's delay formula (blocked-calls-held system)
- Average queue size: $E(L_q) = \sum_{j=c}^{\infty} (j-c)p_j = \frac{(c\rho)^c \rho}{c!(1-\rho)^2} p_0 = \frac{\rho}{1-\rho} \Pi_W$
- If FIFO, the waiting-time distribution is drived as follows:
 - If $N \le c, N_q = 0$
 - If N > c, service rate from the point of view of the system: $c\mu$
 - Distribution of service rate (inter-departure distribution): $S(x) = e^{-c\mu x}$
 - Probability that *k* users completed service in duration length *x*: $P(k) = \frac{e^{-c\mu x}(c\mu x)^k}{k!}$
 - Given there are j users in queue, for duration x, the probability that there are less than j users leave the system: $\sum_{k=0}^{j} \frac{e^{-c\mu x}(c\mu x)^k}{k!}$
 - Distribution of system population N: p_j , which corresponding to j users in the system and j-c users in queue

-
$$\Pr\{W_q > x\} = \sum_{i=c}^{\infty} p_j \sum_{k=0}^{j-c} \frac{e^{-c\mu x} (c\mu x)^k}{k!} = \prod_{w \in C} e^{-c\mu(1-\rho)x}, \text{ for } x \ge 0.$$

-
$$Pr\{W_q = 0\} = 1 - \Pi_W$$

– Average delay:
$$E(W_q) = \frac{(c\rho)^c}{c!c\mu(1-\rho)^2}p_0 = \frac{\Pi_W}{c\mu(1-\rho)}$$

- Average sojourn time:
$$E(W) = E(W_q) + \frac{1}{\mu} = \frac{\Pi_W}{c\mu(1-\rho)} + \frac{1}{\mu}$$

- Average queue length is provided by Little's formula, $E(N_q) = \lambda E(W_q)$ or average system population is provided by $E(N) = \lambda E(W)$

4.3.2 M/M/c/∞/N queue: Limited customer pool (need verify)

- Arrival at state $n \le N$: $\lambda_n = (N-n)\lambda$
- Exponential service time with mean $E[X] = 1/\mu$
- System service rate at state n: $\mu_n = \left\{ \begin{array}{ll} n\mu & 0 \le n \le s \\ s\mu & s \le n \end{array} \right.$
- Balance equations

$$((N-j)\lambda + \min(j,s)\mu) p_{j} = (N-j+1)\lambda p_{j-1} + \min(j+1,s)\mu p_{j+1}$$

$$\implies p_{j} = \begin{cases} \binom{n}{N} \rho^{n} p_{0} & 0 \le n \le s \\ \frac{1}{s!} \rho^{s} \frac{n!}{s!s^{n-s}} \rho^{n} p_{0} & s \le n \le N \end{cases}$$

$$p_{0} = \begin{cases} \sum_{n=0}^{s-1} \binom{n}{N} \rho^{n} + \sum_{n=s}^{N} \binom{N}{n} \frac{n!}{s!s^{n-s}} \end{cases}^{-1}$$

with $\rho = \lambda/\mu$.

4.3.3 M/D/c queue

- Determinstic departure with service time D
- Utilization: $\rho = \lambda D/c$
- Derivation of steady probability
 - $-p_k(t)$: Probability of having k users at time t

$$- p_0(t+D) = \sum_{k=0}^{c} p_k(t)e^{-\lambda D}$$

* Rationale: \sum_{k} (Prob. $k \le c$ users in the system)(Prob. next arrival occur at $\delta t \ge D$)

$$- p_{j}(t+D) = \sum_{k=0}^{c} p_{k}(t) \frac{e^{-\lambda D} (\lambda D)^{j}}{j!} + \sum_{k=1}^{j} p_{c+k}(t) \frac{e^{-\lambda D} (\lambda D)^{j-k}}{(j-k)!}$$

- * Rationale:
 - 1. If there are $k \le c$ users, upon t + D, all the existing users will complete the service and leave, hence we need to have j arrivals in duration D
 - 2. If there are c + k users, there will be c users leave and k remains, thus we need to have j k arrivals in duration D.
- In the long run, $\lim_{t\to\infty} p_k(t) = p_k$,

$$p_0 = \left(\sum_{k=0}^c p_k\right) e^{-\lambda D}$$

$$p_j = \left(\sum_{k=0}^c p_k\right) \frac{e^{-\lambda D} (\lambda D)^j}{j!} + \sum_{k=1}^j p_{c+k} \frac{e^{-\lambda D} (\lambda D)^{j-k}}{(j-k)!}$$

- Z-transform:
 - Think $\{p_0, p_1, p_2, \ldots\}$ as a sequence, the z-transform is $P(z) = \sum_{j=0}^{\infty} p_j z^j$
 - Partial sum starting with p_c : $P_q(z) = \sum_{j=c}^{\infty} p_j z^{j-c}$
 - Expected population: $E(N) = \sum_{j=0}^{\infty} j p_j = P'(1)$
 - Expected queue length: $E(N_q) = \sum_{j=c}^{\infty} (j-c)p_j = P_q'(1)$
- Derivation of E(N) using z-transform:

$$p_{j} = \left(\sum_{k=0}^{c} p_{k}\right) \frac{e^{-\lambda D} (\lambda D)^{j}}{j!} + \sum_{k=1}^{j} p_{c+k} \frac{e^{-\lambda D} (\lambda D)^{j-k}}{(j-k)!}$$

$$\sum_{j=0}^{\infty} p_{j} z^{j} = P(z) = \sum_{j=0}^{\infty} \left\{ \left(\sum_{k=0}^{c} p_{k}\right) \frac{e^{-\lambda D} (\lambda D)^{j}}{j!} z^{j} + \sum_{k=1}^{j} p_{c+k} \frac{e^{-\lambda D} (\lambda D)^{j-k}}{(j-k)!} z^{j} \right\}$$

$$P(z) = \sum_{j=0}^{\infty} \left(e^{-\lambda D} \sum_{k=0}^{c} p_{k} \right) \frac{(\lambda D)^{j}}{j!} z^{j} + \sum_{j=0}^{\infty} \sum_{k=1}^{j} \left(p_{c+k} e^{-\lambda D} \right) \frac{(\lambda D)^{j-k}}{(j-k)!} z^{j}$$

$$= \left(e^{-\lambda D} \sum_{k=0}^{c} p_{k} \right) \sum_{j=0}^{\infty} \frac{(\lambda Dz)^{j}}{j!} + \sum_{j=1}^{\infty} \sum_{k=1}^{j} \left(p_{c+k} e^{-\lambda D} z^{k} \right) \frac{(\lambda Dz)^{j-k}}{(j-k)!}$$

$$= \left(e^{-\lambda D} \sum_{k=0}^{c} p_{k} \right) e^{\lambda Dz} + \sum_{k=1}^{\infty} \sum_{j=k}^{\infty} \left(p_{c+k} e^{-\lambda D} z^{k} \right) \frac{(\lambda Dz)^{j-k}}{(j-k)!}$$

$$(4.1)$$

$$\begin{split} &= e^{-\lambda D(1-z)} \sum_{k=0}^{c} p_k + \sum_{k=1}^{\infty} \left(p_{c+k} e^{-\lambda D} z^k \right) \sum_{j-k=0}^{\infty} \frac{(\lambda D z)^{j-k}}{(j-k)!} \\ &= e^{-\lambda D(1-z)} \sum_{k=0}^{c} p_k + \sum_{k=1}^{\infty} \left(p_{c+k} e^{-\lambda D} z^k \right) e^{\lambda D z} \\ &= e^{-\lambda D(1-z)} \sum_{k=0}^{c} p_k + \sum_{k=1}^{\infty} p_{c+k} e^{-\lambda D(1-z)} z^k \\ &= e^{-\lambda D(1-z)} \sum_{k=0}^{c} p_k + \sum_{k=1}^{\infty} p_{c+k} z^k \\ &= e^{-\lambda D(1-z)} \left(\sum_{k=0}^{c} p_k + \sum_{k=1}^{\infty} p_{c+k} z^k \right) \\ P(z) z^c &= e^{-\lambda D(1-z)} \left(z^c \sum_{k=0}^{c} p_k + \sum_{k=1}^{\infty} p_{c+k} z^{c+k} \right) \\ &= e^{-\lambda D(1-z)} \left(z^c \sum_{k=0}^{c} p_k + \left(P(z) - \sum_{k=0}^{c} p_k z^k \right) \right) \\ P(z) z^c - P(z) e^{-\lambda D(1-z)} &= e^{-\lambda D(1-z)} \left(z^c \sum_{k=0}^{c} p_k - \sum_{k=0}^{c} p_k z^k \right) \\ &= \frac{e^{-\lambda D(1-z)} \left(z^c \sum_{k=0}^{c} p_k - \sum_{k=0}^{c} p_k z^k \right)}{z^c - e^{-\lambda D(1-z)}} \\ &= \frac{\sum_{k=0}^{c} p_k z^c - \sum_{k=0}^{c} p_k z^k}{z^c e^{\lambda D(1-z)} - 1} \end{split}$$

– Note: Change of second summation in (4.1) is because $\sum_{k=1}^{0} = 0$

- Note: In (4.2), by enumeration,

$$\sum_{j=1}^{\infty} \sum_{k=1}^{j} T_{jk} = T_{11} + T_{21} + T_{22} + T_{31} + T_{32} + T_{33} + \dots$$

$$= T_{11} + T_{21} + T_{31} + \dots + T_{22} + T_{32} + \dots + T_{33} + T_{43} + \dots$$

hence we can have $\sum_{j=1}^{\infty}\sum_{k=1}^{j}T_{jk} \equiv \sum_{k=1}^{\infty}\sum_{j=k}^{\infty}T_{jk}$

- Hence the differentiation of z-transform:

$$P(z) = \sum_{j=0}^{c-1} p_{j} z^{j} + z^{c} P_{q}(z)$$

$$P'(z) = \sum_{j=1}^{c-1} p_{j} j z^{j-1} + c z^{c-1} P_{q}(z) + z^{c} P'_{q}(z)$$

$$\therefore P'(z) = \frac{\left(z^{c} e^{\lambda D(1-z)} - 1\right) \left(\sum_{k=0}^{c} p_{k} c z^{c-1} - \sum_{k=0}^{c} p_{k} k z^{k-1}\right) - \left(\sum_{k=0}^{c} p_{k} z^{c} - \sum_{k=0}^{c} p_{k} z^{k}\right) \left(c z^{c-1} e^{\lambda D(1-z)} - \lambda D e^{\lambda D(1-z)}\right)}{\left(z^{c} e^{\lambda D(1-z)} - 1\right)^{2}}$$

$$= \sum_{j=1}^{c-1} p_{j} j z^{j-1} + c z^{c-1} P_{q}(z) + z^{c} P'_{q}(z)$$

$$\therefore E(N_{q}) = P'_{q}(1) = \frac{(c\rho)^{2} - c(c-1) + \sum_{j=0}^{c-1} [c(c-1) - j(j-1)] p_{j}}{2c(1-\rho)}$$

• Crommelin's formula [3] for W_a :

$$\begin{split} \Pr\{W_q \leq x\} &= \sum_{i=0}^{c-1} Q_i \sum_{j=0}^m e^{\lambda(x-mD)} \frac{[-\lambda(x-mD)]^{jc+c-1-i}}{(jc+c-1-i)!} \\ \Pr\{W_q \leq x\} &= \sum_{j=1}^{\infty} \sum_{i=0}^{c-1} Q_i e^{-\lambda[(m+j)D-x]} \frac{(\lambda[(m+j)D-x])^{(m+j)c+c-1-i}}{[(m+j)c+c-1-i]!} \end{split}$$

- where
$$Q_i = \sum_{j=0}^{i} p_j$$
, and m satisfies $mD \le x < (m+1)D$

4.3.4 References

- [13], Chapter 4, Sections 4.2 and 4.4
- [9], Chapter 2, "Markovian Queueing Systems"; Chapter 3, "The Busy Period, Output and Queues in Series"; Chapter 7, "The System M/G/1, Priority Systems"; Chapter 8, "The System GI/G/1, Imbedded Markov Chains"

4.4 Markovian Loss Systems

4.4.1 M/M/1/c

- Poisson arrival with rate λ
- Balance equation: Same as M/M/1, but with $n \le c$

$$\pi_n = \rho \pi_{n-1} = \rho^n \pi_0$$

- If $\lambda \neq \mu$,

$$\sum_{k=0}^{c} \pi_{k} = \frac{1 - \rho^{c+1}}{1 - \rho} \pi_{0} = 1$$

$$\therefore \quad \pi_{0} = \frac{1 - \rho}{1 - \rho^{c+1}}$$

$$\pi_{n} = \frac{1 - \rho}{1 - \rho^{c+1}} \rho^{n}$$

- If $\lambda = \mu$,

$$\sum_{k=0}^{c} \pi_k = \pi_0 \sum_{k=0}^{c} \rho^k = (c+1)\pi_0 = 1$$

$$\therefore \quad \pi_0 = \frac{1}{c+1}$$

$$\pi_n = \frac{1}{c+1}$$

- Expected number of users in the system:
 - If $\lambda \neq \mu$,

$$E[N] = \sum_{k=0}^{c} k\pi_k$$

$$= \sum_{k=0}^{c} \frac{1-\rho}{1-\rho^{c+1}} k\rho^k$$

$$= \frac{\rho}{1-\rho} - \frac{(c+1)\rho^{c+1}}{1-\rho^{c+1}}$$

- If $\lambda = \mu$,

$$E[N] = \sum_{k=0}^{c} k\pi_k$$
$$= \sum_{k=0}^{c} \frac{k}{c+1}$$
$$= \frac{c}{2}$$

- Blocking probability: π_c
- Throughput (i.e. real arrival): $(1 \pi_0)\mu = (1 \pi_c)\lambda$
- $E[T] = \frac{E[N]}{(1-\pi_c)\lambda}$

4.4.2 M/M/c/c

- Poisson arrival and exponential service time with no buffer
- Balance equation:

$$\begin{split} p_{j}(t+\delta t) &= (1-\lambda \delta t - j\mu \delta t) p_{j}(t) + \lambda \delta t p_{j-1}(t) + (j+1)\mu \delta t p_{j+1}(t) \\ &= p_{j}(t) + \left[-(\lambda + j\mu) p_{j}(t) + \lambda p_{j-1}(t) + (j+1)\mu p_{j+1}(t) \right] \delta t \\ \frac{p_{j}(t+\delta t) - p_{j}(t)}{\delta t} &= -(\lambda + j\mu) p_{j}(t) + \lambda p_{j-1}(t) + (j+1)\mu p_{j+1}(t) \\ \frac{d}{dt} p_{j}(t) &= -(\lambda + j\mu) p_{j}(t) + \lambda p_{j-1}(t) + (j+1)\mu p_{j+1}(t) \\ t \to \infty : \quad \frac{d}{dt} p_{j}(t) &= 0 \\ &= -(\lambda + j\mu) p_{j} + \lambda p_{j-1} + (j+1)\mu p_{j+1} \\ (\lambda + j\mu) p_{j} &= \lambda p_{j-1} + (j+1)\mu p_{j+1} \end{split}$$

• Recurrence formula:

$$p_{-1} = 0$$

$$hline p_1 = 0$$

$$p_1 = (\lambda/\mu)p_0$$

$$p_j = \frac{\lambda/\mu}{j}p_{j-1}$$

$$p_j = \frac{(\lambda/\mu)^j}{j!}p_0$$

– Defining $\rho=\lambda/\mu$ and normalizing $\sum_j p_j=1$, we have:

$$p_0 = \left(\sum_{k=0}^c \frac{\rho^k}{k!}\right)^{-1}$$
$$p_j = \frac{\rho^j}{j!} \left[\sum_{k=0}^c \frac{\rho^k}{k!}\right]^{-1}$$

– The formula for p_c is known as the Erlang-B formula (blocked-calls-cleared system):

$$p_c = \frac{\rho^c}{c!} \left[\sum_{k=0}^c \frac{\rho^k}{k!} \right]^{-1}$$

– If c is large, $\sum_{k=0}^{c} \frac{\rho^k}{k!} = e^{-\rho}$ hence Erlang distribution becomes Poisson distribution:

$$\lim_{c \to \infty} \left(\frac{\rho^j}{j!} \middle/ \sum_{k=0}^c \frac{\rho^k}{k!} \right) = \frac{\rho^j e^{-\rho}}{j!}$$

4.4.3 M/M/s/c

- Only $c \ge s$ makes sense, otherwise it is only a M/M/c/c queue
- Buffer for at most c s customers, additional arrivals will be blocked
 - Effective arrival rate: $\left\{ \begin{array}{ll} \lambda & \text{if } 0 \leq n < c \\ 0 & \text{otherwise} \end{array} \right.$
 - Departure rate: $\begin{cases} n\mu & \text{if } 0 \le n < s \\ s\mu & \text{otherwise} \end{cases}$
- By defining the balance equation, we have

$$(\lambda + j\mu)p_{j} = \lambda p_{j-1} + (j+1)\mu p_{j+1}$$
 $(j < s)$

$$(\lambda + s\mu)p_{j} = \lambda p_{j-1} + s\mu p_{j+1}$$
 $(s \le j < c)$

$$s\mu p_{c} = \lambda p_{c-1}$$

$$\mu p_{1} = \lambda p_{0}$$

which yields the recurrence formula:

$$p_{j} = \begin{cases} p_{0} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n} = p_{0} \frac{\rho^{n}}{n!} & \text{if } 0 \leq n < s \\ p_{0} \frac{1}{s! s^{n-s}} \left(\frac{\lambda}{\mu}\right)^{n} = p_{0} \frac{\rho^{n}}{s! s^{n-s}} & \text{if } s \leq n < c \end{cases}$$

$$p_{0} = \left[\sum_{n=0}^{s-1} \frac{\rho^{n}}{n!} + \sum_{n=s}^{c} \frac{\rho^{n}}{s! s^{n-s}} \right]^{-1}$$

4.4.4 M/M/∞ queue

- Taking $c \to \infty$, M/M/c/c will become M/M/ ∞
- Balance equation:

$$\lambda p_{j-1} = j\mu p_j$$

$$p_j = \frac{\lambda}{j\mu} p_{j-1}$$

$$\therefore p_j = \left(\frac{\lambda}{\mu}\right)^j \frac{1}{j!} p_0$$

• Solution:

$$p_0 = e^{-\lambda/\mu} = e^{-\rho}$$
$$p_n = \frac{\rho^n}{n!} e^{-\rho}$$

- In steady state, the system population is in Poisson distribution with mean $E[N] = \lambda/\mu = \rho$
- Average sojourn time equals to average service time: $E[N] = \lambda E[S]$ \Rightarrow $E[S] = 1/\mu$
- Waiting time is zero

4.4.5 Reference

- [2], Chapter 2
- [9], Chapter 4, "Erlangian Queueing Systems"

4.5 Queue with limited pool of customers

4.5.1 M/M/c/c/n queue (with Quasi-random Input)

- A queue with capacity c and finite sources of n inlets. Each inlet has arrival with rate λ .
- When there are k calls exist in the system, only n-k inlets are idle, hence the effective arrival rate to the system is $(n-k)\lambda$
- Balance equations:

$$[(n-j)\lambda + j\mu]p_j = (n-j+1)\lambda p_{j-1} + (j+1)\mu p_{j+1}$$
$$n\lambda p_0 = \mu p_1$$
$$c\mu p_c = (n-c+1)\lambda p_{c-1}$$

- Defining $\rho = \lambda/\mu$
- Recurrence solution:

$$p_{j} = \frac{(n-j+1)\lambda}{j\mu} p_{j-1} = \frac{(n-j+1)\rho}{j} p_{k-1}$$

$$p_{j} = \binom{n}{j} \rho^{j} \left[\sum_{i=0}^{c} \binom{n}{i} \rho^{i} \right]^{-1}$$

$$(4.3)$$

- The distribution p_i is known as the Engset distribution
- If $n \to \infty$, Engset distribution will converge to Erlang distribution:

$$\binom{n}{j}\rho^{j} = \frac{n(n-1)\cdots(n-j+1)}{n^{j}}\frac{(n\rho)^{j}}{j!} \to \frac{(n\rho)^{j}}{j!}$$

- Effective arrival as $n \rightarrow \infty$: $n\lambda$
- Service rate: μ
- $-n\lambda/\mu = n\rho$ is the effective system utilization
- If $n \le c$, Engset distribution p_j will become binomial

- Denominator in (4.3):
$$\sum_{i=0}^{c} {n \choose i} \rho^i = \sum_{i=0}^{n} {n \choose i} \rho^i = (1+\rho)^n$$

– Steady probability:
$$p_j = \binom{n}{j} \rho^j (1+\rho)^n = \binom{n}{j} \left(\frac{\rho}{1+\rho}\right)^j \left(1-\frac{\rho}{1+\rho}\right)^{n-j}$$

• Upon the arrival of a call arrival, the probability of having *k* calls exist in the system as seen by the arriving call is given by:

$$\pi_{k} = \Pr[k \text{ calls exist}|\text{arrival in } \delta t]$$

$$= \frac{\Pr[k \text{ calls exist}] \Pr[\text{arrival in } \delta t | k \text{ calls exist}]}{\sum\limits_{i=0}^{c} \Pr[i \text{ calls exist}] \Pr[\text{arrival in } \delta t | i \text{ calls exist}]}$$

$$= \frac{\binom{n}{k} \rho^{k} p_{0} \times (n - k) \lambda \delta t}{\sum\limits_{i=0}^{c} \binom{n}{i} \rho^{i} p_{0} \times (n - i) \lambda \delta t}$$

$$= \frac{\binom{n-1}{k} \rho^{k} p_{0} n \lambda \delta t}{\sum\limits_{i=0}^{c} \binom{n-1}{i} \rho^{i} p_{0} n \lambda \delta t}$$

$$= \frac{\binom{n-1}{k} \rho^{k}}{\sum\limits_{i=0}^{c} \binom{n-1}{i} \rho^{i}}$$

$$= \frac{\binom{n-1}{k} \rho^{k}}{\sum\limits_{i=0}^{c} \binom{n-1}{i} \rho^{i}}$$

$$(4.4)$$

– Let $\pi_k(n)$ be (4.4) to denote the dependence of number of inlets n

- $\pi_k(n) = p_k(n-1)$
- As *n* → ∞, $\pi_k = p_k$, as PASTA expected
- If n > c, the probability of blocking calls is given by

$$B = \pi_c = \binom{n-1}{c} \rho^c \left[\sum_{i=0}^c \binom{n-1}{i} \rho^i \right]^{-1}$$

- Engset loss formula, the probability of an arriving calls found blocked (call congestion probability)
- $-p_c$ is the probability that an outside observer found the system is fully occupied (time congestion probability)
- Expected number of calls in the system:

$$E[N] = \sum_{i=0}^{c} i p_i = p_0 n \rho \sum_{i=0}^{c-1} {n-1 \choose i} \rho^i$$

- Offered load:

$$ho_{ ext{offered}} = E[n-N]
ho = p_0 n
ho \sum_{i=0}^{c} inom{n-1}{i}
ho^i$$

- Blocking probability is also given by $B = \frac{\rho_{\text{offered}} E[N]}{\rho_{\text{offered}}}$
- Offered load in terms of blocking probability: $\rho_{\text{offered}} = \frac{n\rho}{1 + \rho(1 B)}$
- Note: For the same parameters, variance of distribution decreases as the order Poisson > Erlang > Engset > binomial.

4.5.2 M/M/s/c/n

- Working as a M/M/s/c queue with the size of customer pool be n
- Balance equations:

$$[(n-j)\lambda + j\mu]p_j = (n-j+1)\lambda p_{j-1} + (j+1)\mu p_{j+1} \qquad (j < s)$$

$$p_j = (n-j+1)\lambda p_{j-1} + s\mu p_{j+1} \qquad (s \le j < c)$$

$$s\mu p_c = (n-c+1)\lambda p_{c-1}$$

$$n\lambda p_0 = \mu p_1$$

• Solution:

$$p_{j} = \begin{cases} p_{0}\binom{n}{j} \left(\frac{\lambda}{\mu}\right)^{j} = p_{0}\binom{n}{j}\rho^{j} & \text{if } 0 \leq j < s \\ p_{0}\binom{n}{j} \frac{j!}{s!s^{j-s}} \left(\frac{\lambda}{\mu}\right)^{j} = p_{0}\binom{n}{j} \frac{j!\rho^{j}}{s!s^{j-s}} & \text{if } s \leq j < c \end{cases}$$

$$p_{0} = \left[\sum_{j=0}^{s-1} \binom{n}{j}\rho^{j} + \sum_{j=s}^{c} \binom{n}{j} \frac{j!\rho^{j}}{s!s^{j-s}}\right]^{-1}$$

4.5.3 $M/M/s/\infty/n$

- Infinite buffer: $c \rightarrow \infty$
- Balance equations:

$$[(n-j)\lambda + j\mu]p_j = (n-j+1)\lambda p_{j-1} + (j+1)\mu p_{j+1}$$
 $(j < s)$
$$p_j = (n-j+1)\lambda p_{j-1} + s\mu p_{j+1}$$
 $(s \le j < n)$
$$n\lambda p_0 = \mu p_1$$

• Solution:

$$p_{j} = \begin{cases} p_{0}\binom{n}{j} \left(\frac{\lambda}{\mu}\right)^{j} = p_{0}\binom{n}{j}\rho^{j} & \text{if } 0 \leq j < s \\ p_{0}\binom{n}{j} \frac{j!}{s!s^{j-s}} \left(\frac{\lambda}{\mu}\right)^{j} = p_{0}\binom{n}{j} \frac{j!\rho^{j}}{s!s^{j-s}} & \text{if } s \leq j < n \end{cases}$$

$$p_{0} = \left[\sum_{j=0}^{s-1} \binom{n}{j}\rho^{j} + \sum_{j=s}^{n} \binom{n}{j} \frac{j!\rho^{j}}{s!s^{j-s}}\right]^{-1}$$

• Same effect as M/M/s/c/n queue with $c \ge n$

4.5.4 Reference

• [9], Chapter 7, "The System M/G/1, Priority Systems"; Chapter 8, "The System GI/G/1, Imbedded Markov Chains"

4.6 Multi-class Queue

4.6.1 Batch arrival: $M^{[X]}/M/s/s$ loss system, with PBAS

- X: A random variable representing the batch size
- PBAS: Partial batch acceptance strategy
- Symbols:
 - $-p_j$: Probability that j calls exist at any arbitrary instan
 - $-P(z) = \sum_{i=0}^{\infty} z^{i} p_{j}$: Generating function of p_{j}
 - $b_i = \Pr[X = i]$: Probability of batch size i
 - $-B(z) = \sum_{j=0}^{\infty} z^{j} b_{j}$: Generating function of b_{i}
 - $-\phi_i = \sum_{j=i}^{\infty} b_j$: Probability of $X \ge i$
 - λ : Batch arrival rate
- Balance equation:

$$(\lambda + j\mu)p_j = \lambda \sum_{i=0}^j p_i b_{j-i} + (j+1)\mu p_{j+1} \qquad 0 \le j < s$$

$$s\mu p_s = \lambda \sum_{i=0}^s p_i \phi_{s-i}$$

- Recurrence solution: $p_j = \frac{\lambda}{j\mu} \sum_{i=0}^{j-1} p_j \phi_{j-i}$

4.6.2 Processor Sharing Queue with Mixed traffic

- Two classes of jobs: i = 1, 2
- Fraction of jobs: α_i : $\alpha_1 + \alpha_2 = 1$
- Exponential service time with mean $1/\mu_i\ (i=1,2)$
 - Assumed $1/\mu_1 > 1/\mu_2$

• Density function of service time, *X*:

$$f_X(t) = \alpha_1 \mu_1 e^{-\mu_1 t} + \alpha_2 \mu_2 e^{-\mu_2 t}$$
 $t \ge 0$

- Conditional probability:

$$\Pr[i = 1 | X \ge \tau] = \frac{\alpha_1 e^{-\mu_1 \tau}}{\alpha_1 e^{-\mu_1 \tau} + \alpha_2 e^{-\mu_2 \tau}}$$
$$= \frac{\alpha_1 e^{(\mu_2 - \mu_1) \tau}}{\alpha_1 e^{(\mu_2 - \mu_1) \tau} + \alpha_2}$$
$$> \frac{\alpha_1}{\alpha_1 + \alpha_2} = \alpha_1$$

-
$$\Pr[X < t | i = 1] = 1 - e^{-\mu_1 t}, \therefore \Pr[X > t | i = 1] = e^{-\mu_1 t}$$

- Processor sharing queue: If n jobs in queue, each receives service with rate μ/n simultaneously, where μ is a system parameter of the queue
- State space: (N_1, N_2) where N_1, N_2 are number of jobs of class 1 and class 2 respectively

$$- p_{ij} = \Pr[N_1 = i, N_2 = j]$$

• Balance equation:

$$\left(\lambda + \mathbf{1} \{ i > 0 \} \frac{i}{i+j} \mu_1 + \mathbf{1} \{ j > 0 \} \frac{j}{i+j} \mu_2 \right) p_{ij} = \alpha_1 \lambda \mathbf{1} \{ i > 0 \} p_{i-1,j}$$

$$+ \alpha_2 \lambda \mathbf{1} \{ j > 0 \} p_{i,j-1}$$

$$+ \frac{i+1}{i+j+1} \mu_1 p_{i+1,j}$$

$$+ \frac{j+1}{i+j+1} \mu_2 p_{i,j+1}$$

with solution:

$$p_{ij} = \left(\frac{\alpha_1 \lambda}{\mu_1}\right)^i \left(\frac{\alpha_2 \lambda}{\mu_2}\right)^j \frac{(i+j)!}{i!j!} p_{00}$$

• The processor sharing queue is same as M/M/1 queue:

$$Pr[N = n] = \sum_{i=0}^{n} p_{i,n-i}$$
$$= (\lambda E[X])^{n} p_{00}$$

4.6.3 General Processor Sharing Queue

- Poisson arrival with rate λ
- General i. i. d. service times X with density function $f_X(x)$, c.d.f. $F_X(x)$ and mean E[X]
- Service rate: 1/n for each customer if there are n customers in the system
- System population at time t: N(t)
- State of the system: $\mathbf{X}(t) = (X_1(t), X_2(t), \dots, X_{N(t)}(t))$ where $X_i(t)$ is the remaining service time of *i*-th customer in the system
- Probability function: $f_n(t, x_1, \dots, x_n) = \Pr[N(t) = n, \mathbf{X}(t) = (x_1, \dots, x_n)]$
- Balance equation: $f_n(t + \delta t, x_1, ..., x_n)$ in terms of $f_m(t, x_1, ..., x_m)$

$$f_{n}(t + \delta t, x_{1}, \dots, x_{n}) = (1 - \lambda \delta t) f_{n}(t, x_{1} + \frac{\delta t}{n}, \dots, x_{n} + \frac{\delta}{n})$$

$$+ \sum_{i=0}^{n} \int_{0}^{\frac{\delta t}{n+1}} f_{n+1}(t, x_{1} + \frac{\delta t}{n+1}, \dots, x_{i-1} + \frac{\delta t}{n+1}, y, x_{i} + \frac{\delta t}{n+1}, \dots, x_{n} + \frac{\delta t}{n+1}) dy$$

$$+ \lambda \delta t \sum_{i=0}^{n} f_{X}(x_{i}) f_{n-1}(t, x_{1} + \frac{\delta t}{n-1}, \dots, x_{i-1} + \frac{\delta t}{n-1}, x_{i+1} + \frac{\delta t}{n-1}, \dots, x_{n} + \frac{\delta t}{n-1})$$

- Approximation by using derivatives:
$$f_n(t, x_1 + \frac{\delta t}{n}, \dots, x_n + \frac{\delta}{n}) = f_n(t, x_1, \dots, x_n) + \sum_{i=1}^n \frac{\partial f_n(t, x_1, \dots, x_n)}{\partial x_i} \frac{\delta t}{n} + o(\delta t)$$

Simplifying integral:

$$\int_0^{\frac{\delta t}{n+1}} f_{n+1}(t, x_1 + \frac{\delta t}{n+1}, \dots, x_{i-1} + \frac{\delta t}{n+1}, y, x_i + \frac{\delta t}{n+1}, \dots, x_n + \frac{\delta t}{n+1}) dy = f_{n+1}(t, x_1, \dots, x_{i-1}, 0, x_i, \dots, x_n) \frac{\delta t}{n+1} + o(\delta t)$$

$$-\delta t f_{n-1}(t, x_1 + \frac{\delta t}{n-1}, \dots, x_{i-1} + \frac{\delta t}{n-1}, x_{i+1} + \frac{\delta t}{n-1}, \dots, x_n + \frac{\delta t}{n-1}) = \delta t f_{n-1}(t, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) + o(\delta t)$$

- Hence the balance equation above can be rewritten as:

$$f_{n}(t + \delta t, x_{1}, \dots, x_{n}) = (1 - \lambda \delta t) f_{n}(t, x_{1}, \dots, x_{n}) + (1 - \lambda \delta t) \sum_{i=1}^{n} \frac{\delta t}{n} \frac{\partial f_{n}}{\partial x_{i}}$$

$$+ \sum_{i=0}^{n} f_{n+1}(t, x_{1}, \dots, x_{i-1}, 0, x_{i}, \dots, x_{n}) \frac{\delta t}{n+1}$$

$$+ \lambda \delta t \sum_{i=0}^{n} f_{X}(x_{i}) f_{n-1}(t, x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n})$$

$$+ o(\delta t)$$

- Partial differential equations:

$$\frac{\partial f_n}{\partial t} = -\lambda f_n(t, x_1, \dots, x_n) + (1 - \lambda \delta t) \sum_{i=1}^n \frac{1}{n} \frac{\partial f_n}{\partial x_i}$$

$$+ \sum_{i=0}^n f_{n+1}(t, x_1, \dots, x_{i-1}, 0, x_i, \dots, x_n) \frac{1}{n+1}$$

$$+ \lambda \sum_{i=0}^n f_X(x_i) f_{n-1}(t, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

$$= 0$$

where the partial derivative w.r.t. time t should be zero because the function f_n should converge in steady state

- Solution for the partial differential equation above is:

$$f_n(x_1,...,x_n) = (1-\rho)\lambda^n \prod_{i=1}^n (1-F_X(x_i))$$

* We can verify that: $f_{n+1}(x_1,...,x_{i-1},0,x_i,...,x_{n+1}) = \lambda f_n(x_1,...,x_n)$

*
$$\frac{\partial f_n}{\partial x_i} = -(1 - \rho)\lambda^n f_X(x_i) \prod_{i \neq i} (1 - F_X(x_i)) = \lambda f_X(x_i) f_{n-1}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

- Probability of N = n in steady state:

$$\Pr[N=n] = (1-\rho)\lambda^n \prod_{i=1}^n \int_0^\infty (1-F_X(x_i)) dx_i$$
$$= (1-\rho)\lambda^n \prod_{i=1}^n E[X]$$
$$= (1-\rho)\rho^n$$

4.6.4 M/G/1 Non-preemptive Priority Service Queue

- Classes: i = 1, 2, ..., n where i < j means class i gets priority over j
- Service time of class $i: X_i$
- Poisson arrival with rate λ_i for class *i*. Further, $\lambda = \sum_{i=1}^n \lambda_i$

$$-E[X] = \sum_{i=1}^{n} \frac{\lambda_i}{\lambda} E[X_i]$$
$$-E[X^2] = \sum_{i=1}^{n} \frac{\lambda_i}{\lambda} E[X_i^2]$$

 $-\rho_i = \lambda_i E[X_i]$ is the probability of class *i* customer in service

$$-\rho = \sum_{i=1}^{n} \rho_i < 1$$

- Queueing time of a class *i* customer is the sum of:
 - 1. Remaining service time of the customer in service (if any)
 - 2. Service time of class 1, 2, ..., i customers already in queue
 - 3. Service time of class 1, 2, ..., i-1 customers who arrive while this customer is waiting in queue
- At any time instant, the residue life time R of the customer currently in service is given by: (c.f. section 4.2.4)

$$\begin{split} E[R] &= \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} R(\tau) d\tau = \lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{n} \sum_{k=1}^{N_{i}(t)} \int_{t_{0}}^{t_{0} + X_{i,k}} (X_{i,k} - \tau) d\tau \\ &= \lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{n} \sum_{k=1}^{N_{i}(t)} \frac{X_{i,k}^{2}}{2} \\ &= \lim_{t \to \infty} \sum_{i=1}^{n} \sum_{k=1}^{N_{i}(t)} \frac{N_{i}(t)}{t} \frac{X_{i,k}^{2}}{N_{i}(t)} \frac{1}{2} \\ &= \lim_{t \to \infty} \sum_{i=1}^{n} \frac{N_{i}(t)}{t} \frac{\sum_{k=1}^{N_{i}(t)} X_{i,k}^{2}}{N_{i}(t)} \frac{1}{2} \\ &= \frac{1}{2} \sum_{i=1}^{n} \left(\lim_{t \to \infty} \frac{N_{i}(t)}{t} \right) \left(\lim_{t \to \infty} \frac{\sum_{k=1}^{N_{i}(t)} X_{i,k}^{2}}{N_{i}(t)} \right) \\ &= \frac{1}{2} \sum_{i=1}^{n} \lambda_{i} E[X_{i}^{2}] \\ &= \frac{1}{2} \lambda E[X^{2}] \end{split}$$

• Equation:

$$E[W_{q}^{(i)}] = E[R] + \sum_{k=1}^{i} E[N_{q}^{(k)}] E[X_{k}] + \sum_{k=1}^{i-1} E[W_{q}^{(i)}] \lambda_{k} E[X_{k}]$$

$$= E[R] + \sum_{k=1}^{i} \lambda_{k} E[W_{q}^{(k)}] E[X_{k}] + E[W_{q}^{(i)}] \sum_{k=1}^{i-1} \lambda_{k} E[X_{k}]$$

$$= E[R] + \sum_{k=1}^{i} \rho_{k} E[W_{q}^{(k)}] + E[W_{q}^{(i)}] \sum_{k=1}^{i-1} \rho_{k}$$

$$\left(1 - \sum_{k=1}^{i} \rho_{k}\right) E[W_{q}^{(i)}] = E[R] + \sum_{k=1}^{i} \rho_{k} E[W_{q}^{(k)}]$$

$$\implies E[W_{q}^{(i)}] = \frac{E[R]}{\left(1 - \sum_{k=1}^{i} \rho_{k}\right) \left(1 - \sum_{k=1}^{i-1} \rho_{k}\right)}$$

$$= \frac{\lambda E[X^{2}]}{2\left(1 - \sum_{k=1}^{i} \rho_{k}\right) \left(1 - \sum_{k=1}^{i-1} \rho_{k}\right)}$$
and
$$E[W^{(i)}] = E[W_{q}^{(i)}] + E[X_{i}]$$

$$(4.5)$$

4.6.5 M/G/1 Preemptive Resume Priority Queue

- Parameters: same as those in M/G/1 non-preemtive priority queue
- Sojourn time of a class *i* customer is the sum of:
 - 1. Time to clear all class 1, 2, ..., i customers already in the system upon arrival (referred as T_i)
 - 2. Time to clear all preemptive class 1, 2, ..., i-1 customers who arrive before this customer completes
 - 3. Service time of this customer
- Equation:

$$E[W^{(i)}] = E[T_i] + \sum_{k=1}^{i-1} \lambda_k E[W^{(i)}] E[X_k] + E[X_i]$$

$$\left(1 - \sum_{k=1}^{i-1} \rho_k\right) E[W^{(i)}] = E[T_i] + E[X_i]$$

$$E[W^{(i)}] = \frac{E[T_i] + E[X_i]}{1 - \sum_{k=1}^{i-1} \rho_k}$$

– $E[T_i]$ is given by:

$$E[T_i] = \sum_{k=1}^{i} \frac{\lambda_k E[X_k^2]}{2(1 - \rho_k)} = \frac{\sum_{k=1}^{i} \lambda_k E[X_k^2]}{2\left(1 - \sum_{k=1}^{i} \rho_k\right)}$$

- Hence the sojourn time:

$$E[W^{(i)}] = \frac{\sum_{k=1}^{i} \lambda_k E[X_k^2]}{2\left(1 - \sum_{k=1}^{i} \rho_k\right) \left(1 - \sum_{k=1}^{i-1} \rho_k\right)} + \frac{E[X_i]}{1 - \sum_{k=1}^{i-1} \rho_k}$$

4.6.6 Reference

- [2], Chapter 4
- [14]
- [7], Section 3
- [9], Chapter 5, "Priority Systems"; Chapter 7, "The System M/G/1, Priority Systems"

4.7 Matrix-Geometric Technique

4.7.1 M/M/1 with different arrival rates

- Arrival rate: λ with the system is non-empty and λ' with the system is empty
- Balance equation:

$$\lambda' p_0 = \mu p_1$$

 $(\lambda + \mu) p_1 = \lambda' p_0 + \mu p_2$
 $(\lambda + \mu) p_j = \lambda p_{j-1} + \mu p_{j+1}$ $j = 2, 3, ...$

yields the solution: $p_j = \rho^{j-1} p_1$

• Infinitesimal generator:

$$Q = \begin{pmatrix} -\lambda' & \lambda' & 0 & 0 & \cdots \\ \mu & -\lambda - \mu & \lambda & 0 & \cdots \\ 0 & \mu & -\lambda - \mu & \lambda & \cdots \\ 0 & 0 & \mu & -\lambda - \mu & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• Probabilities *p_i* satisfies:

$$p_0 + \sum_{j=1}^{\infty} p_j = 1$$

$$p_0 + p_1 \sum_{j=1}^{\infty} \rho^{j-1} = 1$$

$$p_0 + \frac{p_1}{1 - \rho} = 1$$

Hence p_0 and p_1 should satisfies:

$$\begin{pmatrix} 1 & \lambda' \\ \frac{1}{1-\rho} & -(\lambda+\mu)+\rho\lambda \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• Expected number of customers in queue:

$$E[N_q] = \sum_{j=1}^{\infty} (j-1)p_j$$

$$= p_1 \sum_{j=1}^{\infty} (j-1)\rho^{j-1}$$

$$= p_1 \frac{\rho}{(1-\rho)^2}$$

4.7.2 Hyperexponential queues: M/H₂/1

- H_r density function: $f_X(t) = \sum_{k=1}^r \alpha_k \mu_k e^{-\mu_k t}$ with $\sum_k \alpha_k = 1$
- Consider a queue with arrival rates λ' if queue empty and λ if queue non-empty; H_2 service time distribution with parameters $\alpha, \mu_1, \bar{\alpha}, \mu_2$
 - Service class: 1, 2 for referring μ_1 and μ_2 respectively, a.k.a. exponential stage
 - Define system state as (n, s) where n is the number of users in the system and s is the service class of the job in service
 - Queue empty: (0,0)
- Infinitesimal generator:

$$Q = \begin{pmatrix} -\lambda' & \lambda'\alpha & \lambda'\bar{\alpha} & 0 & 0 & 0 & 0 & \cdots \\ \mu_1 & -\lambda - \mu_1 & 0 & \lambda & 0 & 0 & 0 & \cdots \\ \mu_2 & 0 & -\lambda - \mu_2 & 0 & \lambda & 0 & 0 & \cdots \\ 0 & \alpha\mu_1 & \bar{\alpha}\mu_1 & -\lambda - \mu_1 & 0 & \lambda & 0 & \cdots \\ 0 & \alpha\mu_2 & \bar{\alpha}\mu_2 & 0 & -\lambda - \mu_2 & 0 & \lambda & \cdots \\ 0 & 0 & 0 & \alpha\mu_1 & \bar{\alpha}\mu_1 & -\lambda - \mu_1 & 0 & \cdots \\ 0 & 0 & 0 & \alpha\mu_2 & \bar{\alpha}\mu_2 & 0 & -\lambda - \mu_2 & \cdots \\ \vdots & \ddots \end{pmatrix} = \begin{pmatrix} B_{00} & B_{01} & 0 & 0 & \cdots \\ B_{10} & A_1 & A_0 & 0 & \cdots \\ 0 & A_2 & A_1 & A_0 & \cdots \\ 0 & 0 & A_2 & A_1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

where
$$B_{00} = (-\lambda')$$
, $B_{01} = (\lambda'\alpha \lambda'\bar{\alpha})$, $B_{10} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$, $A_0 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$, $A_1 = \begin{pmatrix} -\lambda - \mu_1 & 0 \\ 0 & -\lambda - \mu_2 \end{pmatrix}$, $A_2 = \begin{pmatrix} \alpha\mu_1 & \bar{\alpha}\mu_1 \\ \alpha\mu_2 & \bar{\alpha}\mu_2 \end{pmatrix}$

- Balance equation:

$$p_0B_{00} + p_1B_{10} = 0$$
$$p_0B_{01} + p_1A_1 + p_2A_2 = 0$$
$$p_{j-1}A_0 + p_jA_1 + p_{j+1}A_2 = 0$$

for
$$j \ge 2$$

• Solution: $p_j = p_1 R^{j-1}$

$$- p = (p_0 \quad p_1 \quad p_2 \quad \cdots); pQ = 0$$

- Gives $A_0 + RA_1 + R^2A_2 = 0$
- Incorporate with normalization condition,

$$(p_0 p_1) \begin{pmatrix} 1 & B_{01} \\ (I-R)^{-1}e & A_1 + RA_2 \end{pmatrix} = (1 0)$$

- Iterative algorithm for solving *R*:
 - 1. Set $R_0 = 0$
 - 2. $R_{n+1} = (-A_0 R_n A_2) A_1^{-1}$
 - 3. If the system is ergodic, $\lim_{n\to\infty} R_n = R$
- Expected number of customers in queue:

$$E[N_q] = \sum_{j=1}^{\infty} (j-1)p_j e$$

$$= p_1 \sum_{j=1}^{\infty} (j-1)R^{j-1} e$$

$$= p_1 R(I-R)^{-2} e$$

4.7.3 General QBD queues

• General quasi birth death queues:

$$Q = \begin{pmatrix} B_{00} & B_{01} & 0 & 0 & 0 & \cdots \\ B_{10} & B_{11} & A_0 & 0 & 0 & \cdots \\ B_{20} & B_{21} & A_1 & A_0 & 0 & \cdots \\ B_{30} & B_{31} & A_2 & A_1 & A_0 & \cdots \\ B_{40} & B_{41} & A_3 & A_2 & A_1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

where B_{00} is $m' \times m'$, B_{01} is $m' \times m$, B_{n0} is $m \times m'$, others are $m \times m$

- State space: (i, j) where i is the level and j is the phase
 - * m' phases in level 0 and m phases in other levels
- A long vector: $p = [p_0 \quad p_1 \quad p_2 \quad \cdots]$ where $p_0 = [p_{01} \quad p_{02} \quad \cdots \quad p_{0m'}]$ and $p_i = [p_{i1} \quad p_{i2} \quad \cdots \quad p_{im}]$, then

$$pQ = 0$$

with balance equation

$$\sum_{k=0}^{\infty} p_{j-1+k} A_k = 0 \quad j \ge 2$$

$$\implies p_j = p_1 R^{j-1}$$

where
$$\sum_{k=0}^{\infty} R^k A_k = 0$$
.

• Denote M^* to be the matrix M with leftmost column removed, then we have

$$(p_0 \quad p_1) \begin{pmatrix} B_{00} & B_{01} \\ \sum_{k=1}^{\infty} R^{k-1} B_{k0} & \sum_{k=1}^{\infty} R^{k-1} B_{k1} \end{pmatrix} = 0$$

$$(p_0 \quad p_1) \begin{pmatrix} 1 & B_{00}^* & B_{01} \\ (I-R)^{-1} e & \left[\sum_{k=1}^{\infty} R^{k-1} B_{k0}\right]^* & \sum_{k=1}^{\infty} R^{k-1} B_{k1} \end{pmatrix} = (1 \quad 0)$$

4.7.3.1 Markov Modulated Poisson Process (MMPP)

- A k-state CTMC $\{X(t)\}$ with transition rates of $i \to j$ denoted with a_{ij}
- If in state X(t) = n, the arrival rate to the queue is λ_n
 - Arrival process is Poisson with rate $\lambda_{X(t)}$
 - The CTMC $\{X(t)\}$ modulates the arrival
- ullet The queue with arrival rate $\lambda_{X(t)}$ and exponential service times with parameter μ
 - System state: (n,s) with n jobs in the system and X(t) = s is the state of the modulating MC
 - Infinitesimal generator:

$$Q = \begin{pmatrix} B_{00} & A_0 & 0 & 0 & \cdots \\ A_2 & A_1 & A_0 & 0 & \cdots \\ 0 & A_2 & A_1 & A_0 & \cdots \\ 0 & 0 & A_2 & A_1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\text{where } B_{00} = \begin{pmatrix} -\alpha_1 & a_{12} & \cdots & a_{1k} \\ a_{21} & -\alpha_2 & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & -\alpha_k \end{pmatrix}, A_0 = \operatorname{diag}(\ \lambda_1 & \cdots & \lambda_k\), A_1 = \begin{pmatrix} -\alpha_1 - \mu & a_{12} & \cdots & a_{1k} \\ a_{21} & -\alpha_2 - \mu & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & -\alpha_k - \mu \end{pmatrix}, A_2 = \operatorname{diag}(\ \mu & \cdots & \mu \), \alpha_i = \lambda_i + \sum_{j \neq i} a_{ij}$$

• It can be solved by Matrix-Geometric techniques

4.7.4 Reference

- [14], "More General Systems"
- [8]

Chapter 5

Queueing Networks

5.1 Queueing Networks

5.1.1 Definitions

• Open and closed system:

Closed system Total number of customers in the system at all time is a constant, i.e. no external arrival or leaving the system

Open system Customers arrive from an external source and may leave the system

- Markovian Network
 - A network with N nodes,
 - Customer arrive from external to (randomly) node j as a Poisson process with rate λ_i
 - Service offered (exponentially) at node j with rate $\mu_j(n_j)$ where n_j is the number of customers at this node. In particular, $\mu_j(0) = 0$
 - Upon completion, the customer transit from node j to node k with probability p_{jk} , or leaves the system with probability $q_j = 1 \sum_k p_{jk}$
 - * Transition is independent of history (hence Markovian)
 - * Switching probability: p_{jk} where $j \neq k$
 - * Probability of instantaneous feedback: p_{jj}
 - * The stochastic matrix $(p_{jk})_{N\times N}$ is irreducible and aperiodic
 - Queue discipline is FCFS

5.1.2 Markovian Network

5.1.2.1 Open Markovian network

• Construct the queue length vector: $\mathbf{n} = (n_1, n_2, \dots, n_N)$, the transition and transition rates are:

$$(n_1, \cdots, n_j, \cdots, n_N) \rightarrow (n_1, \cdots, n_j + 1, \cdots, n_N) : \lambda_j$$

$$(n_1, \cdots, n_j, \cdots, n_N) \rightarrow (n_1, \cdots, n_j - 1, \cdots, n_N) : \mu_j(m_j)q_j$$

$$(n_1, \cdots, n_j, \cdots, n_k, \cdots, n_N) \rightarrow (n_1, \cdots, n_j - 1, \cdots, n_k + 1, \cdots, n_N) : \mu_j(m_j)p_{jk}$$

• Defining $q(\mathbf{n}, \mathbf{m})$ be the rate of transition from queue length vector \mathbf{n} to vector \mathbf{m} , the total rate of leaving state \mathbf{n} is therefore:

$$r(\mathbf{n}) = \sum_{\mathbf{m}} q(\mathbf{n}, \mathbf{m})$$

$$\begin{split} &= \sum_{j=1}^{N} \lambda_{j} + \sum_{j=1}^{N} \mu_{j}(m_{j})q_{j} + \sum_{j=1}^{N} \sum_{k \neq j} \mu_{j}(m_{j})p_{jk} \\ &= \sum_{j=1}^{N} \lambda_{j} + \sum_{j=1}^{N} \mu_{j}(m_{j}) \left(1 - \sum_{k=1}^{N} p_{jk}\right) + \sum_{j=1}^{N} \sum_{k \neq j} \mu_{j}(m_{j})p_{jk} \\ &= \sum_{j=1}^{N} \left[\lambda_{j} + \mu_{j}(m_{j})(1 - p_{jj})\right] \end{split}$$

and the balance equation is

$$r(\mathbf{n})p(\mathbf{n}) = \sum_{\mathbf{m}} p(\mathbf{m})q(\mathbf{m},\mathbf{n})$$
 or equivalently:
$$p(\mathbf{n}) \left(\sum_{k} \lambda_{k} + \sum_{k} \mu_{k}(n_{k})\right) = \sum_{k} \lambda_{k}p(\cdots,n_{k}-1,\cdots) + \sum_{k} q_{k}\mu_{k}(n_{k}+1)p(\cdots,n_{k}+1,\cdots) + \sum_{k} \sum_{j} p_{kj}\mu_{k}(n_{k}+1)p(\cdots,n_{k}+1,\cdots,n_{j}-1,\cdots) + \sum_{k} \sum_{j} p_{kj}\mu_{k}(n_{k}+1)p(\cdots,n_{k}+1,\cdots,n_{j}-1,\cdots)$$

• The effective arrival rate α_k to node j satisfies: (which is known as the "traffic equation")

$$\alpha_k = \lambda_k + \sum_{j=1}^N \alpha_j p_{jk}$$

• With k_j being is the normalization constant to make $\sum_{n} p_j(n) = 1$, the stationary distribution of queue length is:

$$p(n_1, \dots, n_N) = p_1(n_1)p_2(n_2) \dots p_N(n_N)$$

with the stationary distribution of the individual queue as:

$$p_j(n_j) = k_j \frac{(\alpha_j)^{n_j}}{\mu_j(1)\mu_j(2)\cdots\mu_j(n_j)}$$

5.1.2.2 Closed Markovian network

- For closed networks, there are finite and constant number of customers M in the system
- Due to no external arrival and departures, $\lambda_j = q_j = 0$, and the balance equation becomes:

$$r(\mathbf{n})p(\mathbf{n}) = \sum_{\mathbf{m}} p(\mathbf{m})q(\mathbf{m},\mathbf{n})$$
$$\sum_{j=1}^{N} \mu_{j}(n_{j})(1-p_{jj})p(\cdots,n_{j},\cdots,n_{k},\cdots) = \sum_{j=1}^{N} \sum_{k\neq j} \mu_{j}(n_{j}+1)p_{jk}p(\cdots,n_{j}+1,\cdots,n_{k}-1,\cdots)$$

• The effective arrival rate α_j to node j satisfies: (due to $\lambda_k \equiv 0$)

$$\alpha_k = \sum_{j=1}^N \alpha_j p_{jk}$$

• With k being is the normalization constant to make $\sum_{\mathbf{m}} p(\mathbf{m}) = 1$, the stationary distribution of queue length is:

$$p(n_1,\dots,n_N) = k \prod_{j=1}^{N} \frac{(\alpha_j)^{n_j}}{\mu_j(1)\mu_j(2)\dots\mu_j(n_j)}$$

5.1.3 Quasi-reversibility

For an open Markovian network, the departure at every node is independent Poisson process. Hence the departure $\hat{Q}(t)$ is a time-reverse of queue length process Q(t), this feature is known as "quasi-reversibility" as $\hat{Q}(t) = Q(-t)$ corresponds to a hypothetical queueing network.

An open Markovian network $(\lambda, \mu, \mathbf{P})$ with:

- $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_N)$
- $\mu = (\mu_1, \mu_2, \cdots, \mu_N)$
- $\mathbf{P} = (P_{ik})_{N \times N}$

which gives queue length process $\{Q(t)\}$ has the time-reversed process $\{\hat{Q}(t)\}$ that correspond to the network $(\hat{\lambda}, \hat{\mu}, \hat{\mathbf{P}})$ where:

- $\hat{\lambda}_i = \alpha_i q_i$
- $\hat{\mu}_i = \mu_i$
- $\hat{P}_{jk} = \frac{\alpha_k}{\alpha_i} P_{jk}$

5.1.4 Jackson Network

- The difficulty with analysis of network is that the inter-arrival time after traversing the first queue are correlated with the queue length and not necessary Poisson
 - Jackson's theorem: The correlation is eliminated and randomization is used to divide traffic among different routes, such that the network can be analyzed
 - Result from J. R. Jackson in 1957
 - The significance of Jackson's theorem is the independence among the number of customers at distinct queues at a given time, even if the overall arrival is not a Poisson process.

5.1.4.1 Open Jackson Network

- Jackson network is a special case of open Markovian network (λ, μ, P) such that each node of the network is a M/M/s queue with s_k identical servers at node k
 - There are total N nodes
 - The actual arrival rate at each node is same as Markovian network: $\alpha_k = \lambda_k + \sum_{i=1}^N \alpha_j p_{jk}$
 - Utilization factor of each queue: $\rho_k = \frac{\alpha_k}{s_k \mu_k}$
- The solution of the balance equation is: (by Jackson's theorem)

$$p(n_1, \dots, n_N) = p_1(n_1)p_2(n_2)\cdots p_N(n_N) = \prod_{k=1}^N p_k(n_k)$$

where:

$$\rho_{k} = \frac{\alpha_{k}}{s_{k}\mu_{k}} < 1$$

$$p_{k}(n_{k}) = \begin{cases}
p_{k}(0) \frac{1}{n_{k}!} \left(\frac{\alpha_{k}}{\mu_{k}}\right)^{n_{k}} & 0 \leq n_{k} \leq s_{k} \\
p_{k}(s_{k})\rho_{k}^{n_{k}-s_{k}} = p_{k}(0) \frac{1}{n_{k}!} s_{k}^{n_{k}-s_{k}} \left(\frac{\alpha_{k}}{\mu_{k}}\right)^{n_{k}} & n_{k} \geq s_{k}
\end{cases}$$

$$p_{k}(0) = \left[\sum_{n_{k}=0}^{s_{k}-1} \frac{1}{n_{k}!} \left(\frac{\alpha_{k}}{\mu_{k}}\right)^{n_{k}} + \frac{1}{s_{k}!(1-\rho_{k})} \left(\frac{\alpha_{k}}{\mu_{k}}\right)^{s_{k}}\right]^{-1}$$

- If the network is comprises of only M/M/1 queues, i.e. $s_k = 1$ for all k, Jackson's Theorem becomes:

$$p(n_1,\dots,n_N) = \prod_{k=1}^N p_k(n_k) = \prod_{k=1}^N \left(1 - \frac{\lambda_i}{\mu_i}\right) \left(\frac{\lambda_i}{\mu_i}\right)^{n_k}$$

- The solution for $p(\mathbf{n})$ is called a "product-form" solution

5.1.4.2 Closed Jackson Network

- Setting $\lambda_k = 0$ in open Jackson network, we have the arrival rate at node k becomes $\alpha_k = \sum_{i=1}^N \alpha_i p_{jk}$
 - Fixed M users in the network at any time
 - The network has *N* nodes
- The solution of the balance equation is: (by Jackson's theorem)

$$p(\mathbf{n}) = \frac{1}{G_{N,M}} \prod_{k=1}^{N} \left(\frac{(\alpha_k)^{n_k}}{\prod_{u=1}^{n_k} \mu_k(u)} \right)$$

where:

$$S_{\mathbf{n}} = \left\{ \mathbf{n} : (n_{1}, n_{2}, \dots, n_{N}) \in \{0, 1, \dots, M\}^{N} \land \sum_{k=1}^{N} n_{k} = M \right\}$$

$$G_{N,M} = \sum_{\mathbf{n} \in S_{\mathbf{n}}} \prod_{k=1}^{N} \left(\frac{(\alpha_{k})^{n_{k}}}{\prod_{u=1}^{n_{k}} \mu_{k}(u)} \right)$$

$$\mu_{k}(u) = \begin{cases} u\mu_{k} & 0 \le u < s_{k} \\ s_{k}\mu_{k} & u \ge s_{k} \end{cases}$$

G is a normalization constant and S_n is a set

– If the network is comprises of only M/M/1 queues, i.e. $s_k = 1$ for all k, it becomes:

$$p(\mathbf{n}) = \frac{1}{G} \prod_{k=1}^{N} \left(\frac{\alpha_k}{\mu_k} \right)^{n_k}$$

where:

$$S_{\mathbf{n}} = \left\{ \mathbf{n} : (n_1, n_2, \dots, n_N) \in \{0, 1, \dots, M\}^N \land \sum_{k=1}^N n_k = M \right\}$$

$$G_{N,M} = \sum_{\mathbf{n} \in S_{\mathbf{n}}} \prod_{k=1}^N \left(\frac{\alpha_k}{\mu_k} \right)^{n_k}$$

- In closed Jackson network, the computation of the normalization constant G is tedious due to the size of the set S_n
 - J. Buzen game a convolution algorithm for the computation in 1973

5.1.4.3 Buzen's Convolution Algorithm

- Given M = 0, then the size of S_n is 1 and hence $G_{N,M} = G_{N,0} = 1$
- Given N = 1, then the Jackson's network is a single queue with

$$G_{N,M} = G_{1,M} = \sum_{\mathbf{n} \in S_{\mathbf{n}}} \frac{(\alpha_1)^{n_1}}{\prod_{u=1}^{n_1} \mu_1(u)} = \frac{(\alpha_1)^M}{\prod_{u=1}^M \mu_1(u)}$$

• For any general N, M pair, we have:

$$G_{N,M} = \sum_{\mathbf{n} \in S_{\mathbf{n}}} \prod_{k=1}^{N} \left(\frac{(\alpha_{k})^{n_{k}}}{\prod_{u=1}^{n_{k}} \mu_{k}(u)} \right)$$

$$= \sum_{i=0}^{M} \sum_{\mathbf{n} \in S_{\mathbf{n}}} \prod_{k=1}^{N} \left(\frac{(\alpha_{k})^{n_{k}}}{\prod_{u=1}^{n_{k}} \mu_{k}(u)} \right)$$

$$= \sum_{i=0}^{M} \sum_{\mathbf{n} \in S_{\mathbf{n}}} \left[\prod_{k=1}^{N-1} \left(\frac{(\alpha_{k})^{n_{k}}}{\prod_{u=1}^{n_{k}} \mu_{k}(u)} \right) \right] \left(\frac{(\alpha_{N})^{i}}{\prod_{u=1}^{i} \mu_{N}(u)} \right)$$

$$= \sum_{i=0}^{M} \left(\frac{(\alpha_{N})^{i}}{\prod_{u=1}^{i} \mu_{N}(u)} \right) G_{N-1,M-i}$$

• In the closed Jackson Network with only M/M/1 queues,

$$G_{N,M} = \sum_{i=0}^{M} \left(\frac{lpha_N}{\mu_N}\right)^i G_{N-1,M-i}$$
 $G_{1,M} = \left(\frac{lpha_N}{\mu_N}\right)^M$
 $G_{N,0} = 1$

5.1.5 Multi-class Jackson Network

• Class definition:

5.1.6 BCMP Network

5.1.7 Reference

- [9], Chapter 6, "Queueing Networks"
- [7], Section 4, "Single Class Queueing Networks"

Bibliography

- [1] B. Aazhang. Gaussian process. The Connexions Project, Rice University, July 2002. http://cnx.rice.edu/content/m10238/latest/?format=pdf.
- [2] H. Akimaru and K. Kawashima. *Teletraffic: Theory and Applications*. Telecommunication Networks and Computer Systems. Springer-Verlag, 2nd edition, 1999.
- [3] C. D. Crommelin. Delay probability formulae when the holding times are constant. *Post Office Electrical Engineer's Journal*, 25:41–55, 1932.
- [4] L. C. Evans. An introduction to stochastic differential equations. Lecture Notes. Department of Mathematics, U.C. Berkeley. version 1.2, http://math.berkeley.edu/evans/.
- [5] R. Lockhart. Course notes of STAT380: Stochastic processes. Department of Statistics & Actuarial Science, Simon Fraser University, Fall 2000. http://www.stat.sfu.ca/lockhart/richard/380/00_3/.
- [6] MathWorld. Taylor series. http://mathworld.wolfram.com/TaylorSeries.html.
- [7] P. Nain. Basic elements of queueing theory: Application to the modelling of computer systems. Lecture notes. University of Massachusetts, Amherst, MA, Jan. 1998.
- [8] R. Nelson. Matrix geometric solutions in markov models: a mathematical tutorial. Technical report, IBM, 1991.
- [9] N. U. Prabhu. Foundations of Queueing Theory. Kluwer Academic, 1997.
- [10] S. M. Ross. *An Elementary Introduction to Mathematical Finance: Options and Other Topics*. Cambridge University Press, 2nd edition, 2003.
- [11] S. M. Ross. Introduction to Probability Models. Academic Press, 8th edition, 2003.
- [12] O. P. Sharma. Markovian Queues. Ellis Horwood, Chichester, West Sussex, UK, 1990.
- [13] H. C. Tijms. Stochastic Modeling and Analysis: A Computational Approach. John Wiley & Sons, 1986.
- [14] D. Towsley. Course notes of CMPSCI 691R: Performance evaluation. Department of Computer Science, University of Massachusetts at Amherst, Fall 2002. Available http://www-net.cs.umass.edu/pe2002/.
- [15] Y. M. Wong. A brief introduction to stochastic differential equations. http://members.shaw.ca/yinwong01/intro_SDEs.html, Mar. 2005.