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Chapter 1

Probabllity

1.1 Probability Measure

e Sample spaceQ
e Events:y C Q

e Probability measureP: {« : &/ C Q} — [0,1]]

1.2 Probability models

1.2.1 Formulas and notations

e ExpectationE{X} = / xfx (x)dxfor continuous andE{X} = fox(x) for discrete
o X

- E{h(X)}z/Qh(x)fx(x)dx

e Variance:oZ = E{(X —E{X})?} = E{X?} — (E{X})?
— Known as Steiner’s tyheorem
P(A)P(BIA)
> P(AP(BIA)

Baye’s formula:Pr{A;|B] =

e Total probability formulaP(B) = znj P(A)P(B|A)
i=1

Chebyshev’s inequality: Givemexperiments and the experimental meaX is

2

vi g
P(|X — t) < —
(IX=p>t) < -

Construction of random variables: Inverse transform method

— Lety be a uniformly distributed random value & 1]
— Commulative distribution function interestegl= F (x) = PfiX < x]
- x=F(y)

Little o notation: f(x) = o(x) if lim L)



1.2.2 Exponential distribution and Poisson formula

e Random event with average rate of occurance:

Average number of occurance in duratiom x

Probability of having occurance in infinitesimal interddt A ot

In time interval(0,t], we partition the interval into equal parts, each with lengfit =t/n
Probability of havingk < n occurances irf0,t]: pi(t) = (i) (Adt)K(1—Adt)" ¥

e—)\t(/\t)k
k!

n
k

Taking limit of n — o2 py(t) = lim < ) (Adt)K(1—Adt)"K=

e Probability of no occurance if0,t]: po(t) = Ae

— Interarrival time distributionpo(t) = Ae !
—cdf:Pt)=1—eM

— Mean interarrival timeE(t) = 1/A

— Variance:g? = 1/A?

1.2.3 Erlang distribution
e Truncated Poisson distribution

— Poisson arrivals is truncated by the capacity of outlets
— Poisson arrivals, the waiting time femore arrivals (i.e. the arrival time for theth customer):

B ef)\t)\ (At)kfl B ef)\t)\ ktkfl

PO = = Tk

e Erlangk distribution Ey) is the distribution of the sum dfi.i.d. exponential random variables, i.e. convolution of
ki.i.d. exponentials

— Each random variable with mean
— Mean of the sum (Erlang}: k/A
— Variance:k/A?

e Ex_1k(A) distribution

— Mix of Ex_1 andEy

— A random variableX is the sum of (1k — 1 i.i.d. exponential variables with probability and (2)k i.i.d.
exponential variables with probability=1— p:

oAty k-1gk-2 oMy kek-1
p(t) = DW+(1_ p)w

1.2.4 Other distributions

e Geometric distribution

— pmf: p(x) = (1— p)p*
— Mean:E(x) = p/(1—p)
— Variance:o? = p/(1— p)?

e Gamma distribution

— General form of Erlang distribution (i.e. convolutionlofi.d. exponentials wherkis a positive real number)



— Probability density function:

X—U X—p
(%) e
10 =""5ry
withx > pandy,3 >0

e Hyperexponential: Random select onekaxponentials (referred biyly)

— Arandom variableX is any one of thé exponential distributed random variablegi = 1,... k)
— X =x with probability a;
— X; is exponentially distributed with parametgr

K
— pdfof X: p(t) = 3 ajAie At
i—1

— Mean:E(x) = i ai /A

i=1
2y /A
(Clpa/X)®

x The inequality can be proved by Cauchy-Schwarz inequality

— Coefficient of variationCZ =

e Hypoexponential

— Sum ofk exponential random variables each with paramatér=1,... k)
k
* X =%, with py (t) = A At
i=1

— If Aj=A foralli, itis the Erlang distribution

1.2.5 Important series formulas

. e 1
e Geometric serlesz XK = T with x < 1
k=0

- X .

1.2.6 Markov Chains

e State spaceS
e Transition probability:R;. Transition probability matri¥ = (R )nxn

o Classification of states:

— Leads to: Stateleads to statg if P{‘]— > 0 for somen

— Communicates: Staideads to statg and vice versa. Communicate is reflexive, symmetric and transitive.
— Communicate is a class property

— A Markov chain is irreducible if there is only one communicating class

— Statei is recurrent ifB]! > 0 for somen. Transient otherwise.

x |f a state is a communicating class is recurrent, all states are recurrent
+ |f mean time to recurrent i®, we call it null recurrent

— The period of a recurrent staités the G.C.D. of{n: B > 0}
— Aperiodic: Period of 1

e Ergodic MC: aperiodic, positive recurrent, irreducible



1.2.7 Continuous-time Markov Chain

e A process{X(t) :t > O} takes on values of state spa8such thatPr{X(t+s) = j|X(t) =i} = Rj(s,;s+t) isa

CTMC
— Memoryless
e CTMC with stationary transitions R (s,s+t) = R;j(0,t) = Rj(t)

e Chapman-Kolmogorov equation; (s+t) = > Pk(s)Rj(t) or P(s+t) = P(s)P(t)

e Time from entering stateto leaving state (a.k.a. holding time) has exponential distribution with ngte

Instantaneous transition rate frano j: gjj = Pi’j (0) =viR;

Kolmogorov forward equations?j (t) = > dkjPk(t) — ViRj(t)
k7]

Kolmogorov backward equationB; (t) = - qiP;(t) — ViRj (t)
k]

Derivation:

P(t+h)—P(t)
h—0 h N J]ITO h
P'(t) =P (0)P(t)

- (0 = > _R(ORq ()
k

or usingP(t 4 h) = P(t)P(h) for forward equation

e Ifthe CTMC is strongly recurrent, the transition probability approaches stationary distribBti¢n:— 75

e Stationary initial probabilityv; 7 = > Okj7k
k#]

I#J andth:i@

e Transition probabilityP(t) = e with Qj; = {qijv
—Vi

i=j = n!
— Q is called the infinitesimal generator
I . . - tn
— Writing in symmetric matrix formQ = MAM ~1, then we hav®(t) = Z(M AM ‘l)”ﬁ =M
n=0 '

-mQ=0
— Given the distribution at time= 0 is 71(0), the distribution at time is 71(t) = 77(0)eX

0 Ji—j|>1
e Birth death processyj = ¢ A; j=i+1 with birth rateA; and death ratg;
Woj=i-1
— Linear birth and death procesk; = nA andp, = np with A <
- (A/m"
which hasm, = —2-—~—.
1-(A/m)

=0

Z . An

2

n!

>M_1



1.2.8 Semi-Markov Process
e Definition
— {Z,} is a DTMC with state spacgand transition matri¥®
- {Yé”} i € Sis several i.i.d. random sequences with c.B.fx) = Pr{Yéi> <x}

™ /(20 (0 ,
—If Y <t < 3 Y, thenX(t) = Zn. X(t) is the SMP.
k=1 k=1

e My view:

— Z, controls us to look at whicl{uYn(i)}
— For every stem, we look at a (possibly) differemq(i), and accumulate the sum along
- (4) (3 2 5
We make up a sequence such%s:,Y; 7, Y, ... Y7 Y s
— The sequence make up the time line by concatenation

— At timet on the time line, we refer to last indexhjf), i.e.i. Take it as the SMP

o If {Yn(”} are all exponential distributed with paramelgrthenX(t) is a CTMC
e AssumeX(t) is a MC (or has a embedded MC) with transition probab#ity

- Aij = AiRj
Aij L
- RjZﬁWIthI#LRiZO
keS
= A =30 Ajj
jes

e Stationary distribution:
— Definery = lim Pr{Z,= ]} andm = lim Pr{X(t)=j}
e nﬂ;{y(l)}
LY RE(YD)

ieS

1.2.9 References:

e [14], “Markov Process”
e [5], Lecture 19-20
e [2], Chapter 1, “Introduction”

e [11], Chapter 5, “The Exponential Distribution and the Poisson Process”

1.3 Wiener Process

1.3.1 Brownian Motion

1.3.1.1 Definition

e A symmetric random walK (t) with step sizedx and take a step event time
— X(t) = X1+ X2+ -+ Xy)dx wheren = {%J
_ X = 1 if stepiis upward
1 -1 ifstepiis downward
— Mean:E{X(t)} =0



— VarianceVar{X(t)} = létJ (6x)?

— If we setéx = g+/dt, and letdt — 0, thenVar{X(t)} = g% andX(t) is a Brownian motion

e A stochastic proces3(t) is a Brownian motion if

1. S(t) N(0,0%)

2. Independent increments: tif <t; < ---

independent

3. Increments are stationary regardless. &t +s) —

4. 5(0) =

1.3.1.2 Standard Brownian motion

< tn, thenS(t1) — S(to), S(t2) — S(ta), ..., S(tn) — S(tn-1) are

S(s) N(0, o%t)

e If 0 =1, the Brownian motion is called the standard Brownian motion. For any Brownian m&tionB(t) =

X(t)/o is a standard Brownian motion

— If X(t) is a standard Brownian motion, the p.d.f.Xft)is given by: f;(x) =

— Pd.f. ofX(t1) =xq, X(t2) =X, ..

f (X1, %2, . ..

¢ Conditional probability with ofX(s) givenX(t) =

fs(X) fi_s(B—X)

iXn) = iy (%) fip—t, (2 —%0) - -

efx2 /2t

1
V2mt?
<tn:

fta—tn_2 (Xn —Xn-1)

(Xn*Xn—l)2 )

2(t27tl> Z(In *tn,l)
VOt (to—t1) - (th—tn_1)]

B with s < t (the future value):

fs\t (X| B) = ft(B)
eo(-5-525) Jon(-%)
- J/(2m2sit—ys) V2t
B sB? — ZBsx+tx2 B?
-\ﬁex« et )
st/t ZBxs/t+x2 B2
~\ 2ms(t—s) eXp( 25(t—9)/t 2t>
B x2 — 2Bxg/t + (Bs/t)? — (Bs/t)>+B%s/t  B?
~\Vomt-s exp( 2S(t—9)/t 2t>
(x—Bs/t)? —B?s(s—1)/t? B?
~\ 2ns eXp< 25(t—9)/t 2t>
B (x— Bs/t 52 s(s—t)/t?2 B2
~\ 2msit—9) ex'°< 2S(t—s)/t | 2s(t—s)t 2t>
/ (x— Bs/t
- exp( 2s(t )
~ E{X(9)X(t) =B} = ESB
— Var{X(s)|X(t) = B} = fs(t g
e However, ift <t (the past value) is given,
— Expected increment is zero:

E{S(t)|S(1)} = E{S{t) — (1) + §(1)[S(1)}
=E{S{t) — S(1)[S(1)} + E{S(1)[S(1)}
=0+ Y1)
=9(1)



— Variance increases with time:

Var{S(t)|S(1)} = Var{S(t) — (1) + (1)|S(1)}
=Var{S(t) - S(1)|S(1)}
=Var{S(t) - (1)}

=t—1
e Combining Brownian motion: LeX N(0,0?) andY N(0,1?) are independenZ = X + .
— Conditional distribution oK givenZ:

fxz(x,2)  fxy(X,z—Xx)

whereZ N(0, y?) with y? = g2 4 12. Hence

1 2 1 (z—x)?
Vona? P —202) " Jon P~ 57 )
2
Tlny'z exp(—zz—yz)
(x—a)?

1
Vo N )

fxjz(%,2) =

To b’z o? o iy o )
whereb= — anda= — = ———z Thatis, giverZ, the conditional distribution oX N(a,b).
T O°+T1

— If t < ssuch thalX = X(t), Y = X(s) — X(t), andZ = X +Y = X(s). ThenoZ =t, 62 =s—t,02 =s—t+t=s.

t
* a= gX(s)

(s—1t)t
S t

« E{X|Z} = E{X(t)|X(s)} = gX(S)

(s—1t)t

s

x b=

x Var{X|Z} = E{X(t)|X(s) =

1.3.1.3 Hitting Time

o Hitting time: GivenX(0) = 0 andX(t) N(O,t). Let the first time of a particular motion to hit> 0 is T,
Pr{X(t) > a} = Pr{X(t) > aTa <t} PH{Ta <t} + P{X(t) > aTa > t} P{Ta > t}
= PHTa <t} 40
oo PH{Ta <t} =2PHX(t) > a}

e ¥ /2qy

2 00
N \/ZTII/a
2 /oo 7X2/2t
== e X /2dx
V21T Ja/ v

— Pr{X(t) > a|T, <t} = % because of the symmetric nature of Brownian motion
— Pr{X(t) > a|Ta >t} = 0is obvious by definition ofy

— For generali € (—o,0), P{Ty <t} = iz/ e /2 gy
Vet Jjal/vi

2 * 2
— Similarly, we can hav®r{ maxX(s) > a} =PH{T, <t} = —/ e ¥/ 2dx
Ossst V2t Jia/vi

— The probability of hittinga before hitting—b (with a, b > 0) can be analyzed by symmetric random walk with
step sizedx — 0:
b

Pr{hitting a before hitting—b} = ash



1.3.1.4 Box-Muller Method for Simulating N(0, 1)

1 e—x2/2

e Normal density functionN(0,1) = >
m

e If two uniform random numbers are drawn frdf 1],

y = +/—2Inx3 cog211x2)

will give y N(0, 1)

1.3.1.5 Brownian motion with drift

e Brownian motion with drift:X(t) = oB(t) + ut whereB(t) is a standard Brownian motion

— X(t) N(ut,0t)
— X(t)still has stationary and independent increments (@) = 0

1.3.2 Geometric Brownian motion

e If {X(t)} is a Brownian motion with drift, thei (t) = eX() is a geometric Brownian motion
e Geometric brownian motior¥ (t) = eX() whereXt)is a Brownian motion with drift
— X(t) N(ut,0?t), wherep is called the drift parameter arais called the volatility ofY (t)
— Given all the past value up ®< t,
E{Y(t)|Y(u): 0<u<s}=E{“D|X(u): 0<u<s}
= E{X&OXOXE X (u): 0<u<s}
= XOE{XUXEX(u): 0<u<s)
zy(s)E{eX(t%X(S)}
_ Y(S)eﬂ(t*5)+(t*5)02/2
=Y(s)elt-9H+0?/2) (1.1)

where a result from the moment generating funcide?V} = eAE{W}+avariW}/2 g ysed
— Ratio of a geometric Brownian moticfY } att + r andt is lognormal distributed:

log (YS:(J;)T)) N(ut,o?t)

o A stochastic procesgX(t)} is a martingale iE{X(t)|X(u) : 0 <u < s} = X(s) wheneves <t.

2

. . . . . o
— A geometric brownian motion can be a martingale with- 3

e Use of geometric Brownian motion: Security price modeling
Let S(t) be the price of a security atthen the expected price is given by

2
E[Sit)] = S(0) exp((“ ad )t)

— S(t) is a limit as the following:
Price of the security will go up by the factawith probability p and go down by the factat with probability
1— pin everydt time units, where

u=exp(aVat)
d = exp(—oVot)
3o+ )

As ot — 0, §(t) is obtained as previously mentioned



1.3.3 Pricing Stock Options

1.3.3.1 Arbitrage
e Option scenario: An option of pricgy to buyy shares of a stock at pri¢eat timet

— Attime 0, the option andshare of stock is purchased at prige< P. Total cost ihHx+ cy
— Attimet, the stock price per share can eitheifhe- P> PR orPR <Py <P

« If Pr: The total worth isP1x+ (PL — P)y

% If Po: The total worth igx

x Fix the worth at:

Pix+ (P — P)y = Pxx

PL—P
- PP~
— Gain att:
Pox—Pyx—cy= (P, — P+ Pl7pzc)x

P—P
_ PR+PP,—PR—PRoPi+CR—cR
- P—P

with careful choice ot andx, we can make the gain always non-negative. A sure win betting in this mannar
is called an arbitrage.

e Arbitrage theorem:
A set of possible outcome®= {1,2,...,m} andnwagers. Amounx; € R is bet on wager and the returixr;(j) is
n

earned if the outcome ig A betting scheme = (x1, Xz, ...,X,) will have the returrR= _inri(j) on outcomej.

i=1
Then either

m
1. There exists a probability vectpr= (p1, p2,..., Pm) Which )" p;jri(j) =0, Vi=1,...,n, or
=1

m
2. There exists a betting scheme: (x1,Xy, ..., X,) which > xiri(j) >0, Vj=1,...,m
i=1

1.3.3.2 Black-Scholes option pricing formula

e Present price of a stock ¥(0) = xp. Current interest rate is (i.e. 1000%).

Let the price of a stock dtis X(t). Then the present value ¥f(t) is e 9'X(t)

Optioni costsc; per share to allow a purchase of stock at tifrfer the price ofK; per sharei =1,... N

There is no sure win strategy, hence, by arbitrage theorem, there is a probability nitager¢he set of outcomes
under which all the wagers have zero expected return

A wager observe the stock up to tisethen purchasing stock atand selling it att, with 0 <s<t < T. The
expected return to be zero.

— Present value of purchasing:?°X(s)
— Present value of sellingg9tX(t)
— Expected return is zero:

Ep{e “X(t)—e “X(s): 0<u<s}=0
Ep {e “X(t)[X(u): 0<u<s}=e (s (1.2)

e The wager purchased an option for buying one share of the stadkrahe priceK

— Attimet, the worth of the option i$X (t) —K)*
— Present value of the optios: @ (X(t) — K) "

10



— Cost of option at time 0 with no arbitrage possibte= Ep {e~9* (X(t) —K)"}
— Condition for arbitrage possible: The is Rahat satisfies both

Ep {e X (t)[X(u): 0<u<s}=eX(s) (1.3)
Ep {e i (X(t)—K) "} =¢ (1.4)

for some option with present cost; and exercise prick; at timet;

e Suppose pricX(t) = x0e"® is a geometric Brownian motion with drift coefficieptand variance parameter.
If defining a = 4 02/2, and using equation (1.1):

E{X(t)[X(u): 0<u<s}=X(s)elt-9H+%/2)
— X(g)e?t9
E{e " X()[X(u): 0<u<s}=e X(s)

— If P is the probability measure governifgoe’ : 0 <t < T} whereY(t) N(ut,g?), the equation (1.2) is
satisfied

— For no arbitrage, the price of an optioncis= Ep {€ 9 (X(t) —K)"}, i.e.
ce =Ep {(X(t) —K)"}
— (o8- K)* py)ly

® 1 2 /552
= X0 — K) - ————@ -HU7/20% gy
Ag(K/xo)( ) V2mo?t

y—ut
Let = -
et w oL’
o dw= id
. = eV y
y=oviw+ put
“ 1 2 902
Then ce"t:/ x0€ — K = g y-uT20%y
log(K/xO)( ) V2ot y
) 1 W2 /2
= xoe?VIHHt ). = e /20 idw
Ag(K/xw( ) V2no2t

” 1wy
- XoeVIWHHt _ K. e " /2dw
A)Q(K/XO)( vam

t 0 )
— @ / eUW\ﬁe_Wz/de_ L / e_WZ/ZdW
V 27T Wo 27-[ Wo

log(K /o) — pt
ot '

2 2 0
e’ / / ef(wfo\/f)z/zdw
Wo

= d9°/2Pr{N(0VA, 1) > Wo}
= d9*/2P{N(0,1) > Wo — oV}

with wg=

Consider i/ eoWie W2y —
V21T Jw 2m

1 z 2 1 z
— Standard normal distribution functio®(z) = — e X /2dx= = <1+erf ())
@ \fzn/,w 2 NG

* P{N(0,1) > z} = P{N(0,1) < —z} = ®(—2)

— Hence we have

- V2m 21T Jw,
= x0e"e”V/2Pr{N(0,1) > wo — o/} — KPH{N(0,1) > wo}
= xo6H TN 20 g\ /f — o) — KD(—wp)

t 0 0
cem—xoe“/ e"""\ﬁe*‘”z/zdw—i/ e "/2dw
Wo \%

11



= X0€™ D(0v/t —Wp) — KD (—wp)
c=x® (0vt —wp) —Ke ' (—wp)
0%t + pt — Iog(K/Xo)> at (ut - |09(K/Xo)>
or cx® —-Ke "o ——M—= 15
o ( oVt oVt (1.8)
where (1.5) is called the Black-Scholes option cost valuation formula
* With a = p + d?/2, the value ofvg can be written as: (which has poinvolved explicitly)

W — log(K/x0) — at +o?t/2

1.3.3.3 Obtainingo?

e In practice, we observe the price proc¢xst) = €'} for timet € [0, 5], with a fixed intervah

-N= EJ samples o¥ (t) obtained

— DefineW =Y (kh) —Y((k—1)h),k=1,...,N
They are i.i.d. normal random variables with variahcg
N _
: v W -w)?
Sample variance® = ; N1

1\
- M has ax-squared distribution witthl — 1 degrees of freedom, hence

(o%h)
(N-1)&
e S )
N\
Var{('\l(ozi))s}:Z(N—l)

* For random variabl& in chi-squared distribution witk degree of freedonk {x} = k andVar{x} = 2k

* We have:E{S?/h} = 02 andvar{S/h} = 20%/(N - 1)
which means we can reduce the varianc&dby makingh smaller (or equivalently\ larger) , henc&?

can be a better estimate of
- rI1im & = ¢2. This is the way to obtaiw? for equation (1.5)

1.3.3.4 Martingale

e A stochastic procesgX(t) : t > 0} is a martingale iE{X(t)|X(u): 0<u<s<t}=X(s), hence
{e79'X(t) : t > 0} is a martingale ifE {e~ X (t)|X(u) : 0<u<s} = e 9X(s), which results in no arbitrage
possibilities
— For a martingale proces«(t) : t > 0} which governs the stock price, the cost of a option at tirméth
exercise pric& should be:

c=E {e““ (e™z(t) - K)+}
—e{(zt)-Kke™)"}

for no arbitrage. C.f. equations (1.3) and (1.4)

— Example of martingale:
Let {N(t) : t > 0} be a Poisson process with rat¢ andYi,Y,, ... is a sequence of independent random

variables with common meagn. Let



N(t)
for s<t. ThenE{X(t)|X(u): Ogugs}:X(S)E{ Yj} and

j=N(s)+1
N(t) o Na-A(t—s)
(At—9)"e
el [ vp=ur A0
j=N(9)+1 n=0 :
_ a9\~ AH({E—9)"
€ Z n!
n=0
t s)eﬁu(t S

which meansy = A (u —1).

1.3.4 Gaussian Process

e A Gaussian process is a procggs(t) : t > 0} with meanpyx(t) and covariance functiofx (t1,tz) such that
{X(t1),X(t2),...,X(tn)} is @ multivariate normal distribution for atyty, ...ty

— For any vectorX = (X(t1),X(t2),...,X(tn)) formed by any sampling oX(t), the p.d.f. is a multivariate
normal distribution:

1 1 n
fX(X) (ZH)N/Z\/Eexp< (X l"lx) zX (XIJX)> X€eR
pix (t1)
ux (t2)
where Ly = .
Hx (tn)
Cx(t1,t1) Cx(t1,to) -+ Cx(ty,tn)
Cx(t2,t1) Cx(t2,t2) Cx (t2,tn)
2x = ) ) )
Cx(tn,t1) Cx(tn,t2) --- Cx(tn,tn)

e Obviously, Brownian motion process is a Gaussian process

e If X(t) is a standard Brownian motion process, we have

Cx(s;t) = CoyX(s),X(t)}
= CoyX(s), X(s) + X(t) — X(s)}
= CoV{X(s),X(s)} +CoV{X(t) — X(s)}
= CoV¥{X(s),X(s)}
=Var{X(s)}
=s

— Fors< 1 conditioning onX(1) = 0, E{X(s)|X(1) =0, s< 1} = 0. Hence fos<t < 1,

CovX(8), X(1)|X(1) = 0} = E{X(IX(1) X (1) = 0}
— E{E{X(9X)IX(1).X(1) = O}|X(1) = 0}
= EX() EX(OXD}IX(D) =0}

(
—e{x® XWX =0

13



= °E {X2(IX(1) =0}
- Est(l—t)
—s(1—1)

where the conditional mean and variance of Brownian motion process is applied.

1.3.5 References

e [5], Lecture 21-23
e [10], Chapter 2, “Normal Random Variables”; Chapter 3, “Geometric Brownian Motion”
e [11], Chapter 10, “Brownian Motion and Stationary Processes”

e 1]
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Chapter 2

Stochastic Calculus

2.1 Stochastic Integral

e Given{X(t): t > 0} is a standard Brownian motion, arids a real function with continuous derivative defined on
[a,b], the stochastic integral is defined as Riemann sum:

/bf(t)dx I|met. (tiz1) — X(t)] (2.1)

witha=1ty <ty <--- <ty <thy1 = bis a partition offa, b] such that
rLim max(ti1—t) =0
—s 00 |

— The definition of (2.1) is called the Reimann-Stieltjes integral or Lebesgue-Stieltjes intedralithf respect
to X on[a,b]

n
— Compare: Reimann integral dfwith respect td on [a,b|: fa t)dt= lim > f(t;)ot

n—»ool -0

e Integration by parts formula in stochastic integral:

th. X(tis1) = X(4)] = f(b)X(b) mel (tiva) — F(t)]

i=0
b b
/ f(t)dX(t) = f(b)X(b) — f(a)X(a) —/ X(t)df(t) (2.2)
a a
which (2.2) is usually taken as the definition to calculate the stochastic integral.

— Expectation is zero:

b b
E{/ f(t)dX(t)} :E{f(b)X(b)}—E{f(a)X(a)}—E{/ X(t)df(t)}
b
— f(b)E {X(b)} - f(a)E {X(a)} - / E{X(t)}df()

- f(b)-O—f(a)~O—/bOdf(t)
=0

— Variation:

Vaf{if<ti>[><(ti+1)—><<ti>]} ~ £2()var [X(41) - X(1)

i=0

= fAt) (i —t)



e The procesgdX(t) : t > 0} is called the white noise anﬁf f(t)dX(t) is the white noise transformation as it can
be imagined that a time varying functidit) travels through a white noise medium to yield the output at time

[P f(t)dx(t

e Example: Particle in Brownian motion

A particale moving with velocity(t) in viscous fluid. The retardation Bv(t) and the accelaration due to Brownian
motion isaX’(t) where{X(t) : t > 0} is a standard Brownian motion

\/(t)=—BV()+0’X()
eVt +th]:ore’3t
& o] e
ePlv(t) = v( +a/ e’X'(s)

t
v(t) =v(0)e P+ a / e Pt=Sdx(s)
0

v(t) =v(0)e P+ a

X(t) - /0 X(s)pe g

which the last line is using (2.2).

2.2 Itd Calculus
e A standard Wiener process/Brownian motith

— Infinitesimal incrementeW in time dt has densﬂy:zie*dwz/Zdt

— Mean ofdW: dW = E{dW} =0
— Variance ofdW = E { (dW — dW)?} = E {(dW)?} = (dW)?
x But according to the density function, the variancdtishence

(dW)2 = dt (2.3)
— A function of Wiener processt (t,W) has the differential
df(t,W) = f(t+dt, W +dW) — f(t,W) (2.4)

e Taylor's expansion: [6]

L (M 0" F(XY) <k sk
+"'+k0(k)axkay”k(5x) (Oy)" -
— Hence tyhe Taylor's expansion of (2.4):

df(t,W) = —f(t,W) + f(t +dt, W +dW)

—f(t, W)+ f(t, M)+ f(;tW)dt—Fafg/’\‘W)

dW
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19%f(t, W)
2 owW?

10%F(t, M) . »
e (dt)?+

2% (t, W)
JtoWw

dW +

19%f(t,WM)
2 o2
_ of(t, W)
ot

(dt)?+ dtdw + (dW

It W)
oW

* Substituting (2.3), the mean behaviordf(t, W) is therefore:

af(t, W) 19%f(t, W)
2 ot?
192f(t,WM)
2 ot?
1021 (t,W™)
T2 owe
A (t, W)
oW

dt+

2

0°f

dt+ F)

df(t,W) = (dt)?+

(dt)2 +

dt

dW

| dt+

dt
e Chainrule:
— Letdx(t,WM) = a(x,t)dt+ b(x,t)dW
— For f(x(t,\M)),

af(x)
ox

df(x(t,W)) = _a(x,t)

2
sz( )a} dt+ b(x, t)—dW
dx(LV\A 1 9%x(t,W)

+3 ot
1 9%x(t,W)

ox(t, W)
5W

dx(t,W) =
ox(t, W)

9%f(t, W)
otow

toW
9% (t, W)
Jotow

) 4+

192f(t,W)

2
2 owz @R+

dtdw +

10%f(t,WM)
2 w2
10%f(t, W)
2 W2

(t’W)dtdW—l—

(AW)2+ -

dtdw + dt+---

9?1 (x) IX(t, W) af(x)

dt+ dw

df(x(t, W) =

a§<>+2(

(o0 oy

IX(t, W)
ot
— This is called the one-dimensional 1t6’s formula

2 oW W

e Traditional product rule:

d(f(t)g(t)) = f(t+dt)g(t+dt) — f(t)g(t)

(t+dt) — f ()] g(t +dt) + (1) [g(t +dt) — g(t)]
(t+dt) — ()] [g(t +dt) —g(t)] + [f(t+dt) — f(1)]
df(t)dg(t) +g(t)df(t) + f(t)dg(t)

_ AR dgt) 40, dF
dt dt (dt)*+ dt AT

ft
[f
[

do(t)
o (ot

— If dtis infinitesimal,(dt)2 = 0 and we get

df(t)

d(f(Og(t) =~

dt
e Product rule in Itd’s calculus:

dI(F (L W) gt W) = F(t-+dlt, W -+ V) gt + it W+ ) —

[f (t+dt, W +dW) — f(t,W)] g(t, W) + f(t, W)
(t,W)dg(t, W) +g(t, W)d f(t, W) + f(t,W)dg(

f
[f
[f
+
df(

d(f(t

af(t,Wm) lo”'zftV\A dftW
W= (Z5 o

1&'2 ag(t,w
( - Mz )m
[ 102ftV\4

(dftV\A ) df(t,V\&

2 W2

f(t,W)g(t
(t-+dlt, W+ W) — F (£, V)] gt + dt, W+ dW) + (£, W) [g(t -+ dt, W+ dW) —
(t-+dt, W + dW) — f(t,W)] [g(t + dt, W + dW) —

)

0x2 oW ax

g(t) + f(t) [g(t +dt) —g(t)]

4O g oyat+ 99 )t

W)

g(t,W)]
g(t,W)]

+dt, W+ dW) —
)

[o(t g(t,W)]
t, W



(ag (tW) ng(t,w)) g 0g(t7V\4)dW]

2 OW?2 oW
2
[ (10 MY g, DM g
2
+ Kdg(;,tW) 52 33\4;’\“) dt+ 09&&W)dw} f (£, W)
_(0f(t,W) | 10%F(t, W) (dg(t, W) | 19%g(t, W)
_( a2 W2 )( a2 W2 )(dt)z
of(t,W) (dg(t, W) | 1d%g(t, W)
oW ( Gt P )dtdW
af(t, W) | 19%f(t, W) dg(t, W) 9 f (t, W) 9g(t, W) , 112
+( o 2 6V\.{2 ) awg O T e (AW
2
(P00 A7 Mg
2
(PP s At
_ of(t,W) dg(t, W W)? Ka t, W) 162f<tvw>) af(t, W) }
_ ow M + +2 dt+ g W gt W)
2
L [(fn ;{W )t W] 1
_0f(t,V\4) (t, )
= ow (dW)?
2 2
+ (df +§0 ;S\i;m)g(tw” (09(‘;}“4) +%0 gs\g\“) f(t,W)} dt
[of(t,W™) ag(t, W) }
+_ W g(t, W) + oW f(t, W) | dW
which yields the following Itd’s rule:
d(f(t,W)g(t,W)) =
af(t,W) | 19%f(t,W) ag(t, W) 102 0f(t7V\4)0g(t,V\4)
(a5 ot (P50 ST )t S
af(t, W) ag(t,Wm) }
| 2 ot + 250 | aw

2.3 Stochastic Differential Equations

e Stochastic differential equations is of the form:
n
dX(t) = F(X(1)dt+ Y gi(X(t))dN(t
i=1

where{X(t)} is a stochastic process described by the stochastic differential equdtibnare Poisson counters
that drivesX(t), and f (x), gi(x) are real-valued functions
— Poisson countel (t) with dN (t) = 0 if no eventi occur att anddN (t) = 1 if eventioccur att

e Properties of stochastic differential equations

1. If h(t) = h(X(t)) is a function of a stochastic process, then (without proof)

dh(t) = dz(t) ( dt+Zg. )

dh() dt+z

it gi (X(t))dN (t)
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dh(t)

=g [(X®)dt+ > (X(t) +gi (X(1) — h(X(t)]dN(t) (2.9)
i=1

2. Let); be the rate associated with(t), then

dEX()]

g = Elf (X)) JF;/\iE[gi (X(®))] (2.6)

e Example of using stochastic differential equations: Analyzing M/G/1 queue

— Avrrival is represented by Poisson counting procs$&)} with arrival rateA, general service timx

— LetW(t) be the amount of work in the system (which can also be the queueing time of the customer arriving
att), then

awie) - —dt+XdN(t) W(t) >0
~ | XdN(t) W(t) =0
= —1{W(t) > O}dt+ XdN(t)
— By (2.6), we have

dEW(1)
dt

= —E[1{W(t) > 0}] + AE[X]
= —PrW(t) > 0]+ AE[X]

— If the system is stablgg 2 AE[X] < 1 anddE[W(t)] /dt = 0, hence

dEW(®)] _
dt
—PrW(t) > 0] +AE[X] =0
PriW(t) > 0] = AE[X]=p

— Similarly, we have:
dW?2(t) = 2W(t)dW(t)
= —2W(t)1{W(t) > 0}dt-+2W(t)XdN(t)
= —2W(t)L{W(t) > 0)dt+ (W(t) +X)® =W3(t))dN(t)  (why?)
%j(t)] = —2E[W(t)1{W(t) > 0}] + A (2EW(t)X] +E[X?])
= —2E[W(t)] + A (2EW(t)|E[X] + E[X?])
= —2EW(t)] + 2pE[W(t)] + AE[X?]
— In steady stated E[W?(t)]/dt = 0 which yields the Pollaczek-Khinchin formula
0= —2EW(t)] +2pEW(t)] + AE[X?]
2(1- p)EW(1)] = AE[X?|

AE[X?]
2(1-p)

EW()] = EWg| =

2.4 References

e [4]

[10], Chapter 7, “The Black-Scholes Formula”

[11], Chapter 10, “Brownian Motion and Stationary Processes”

(15]
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Chapter 3

Stochastic Processes

3.1 Balance Equations

3.1.1 The queue

¢ Interarrival and service time distributions are both Markovian
e Probability measurep,(t) defined as the probability that there arenits in the system at time

e Considering — t + ot wheredt is really a short time

— Can be any of the following:

1. No arrival and no departure

2. Only an arrival takes place

3. Only a departure takes place

4. Both departure and arrival occurs

— Probability of an arrival occur in intervat: A ot

— Probability of a departure occur in internvat: ot

— Hence fom > 0,

Pa(t+0t) = pn(t)(1—Andt)(1— pndt)

+Pn(t) (Andt) (Lndt)
+Pn+2(t) (Hn+10t) (1 — Any20t)
+Pn-1(t) (An-10t)(1— pn-13t)
+o(at)

and forn =0,

po(t+0t) = po(t)(1—Aodt)
+Pa(t) (26t)(1—A16t)
+0o(dt)
— Take differentiation ompn(t):

d
dat Pn(t) = —(An+ Hn)Pn(t) +An—1Pn-1(t) + Hnr1Pnsa(t)

%po(t) — —DoPo(t) + Hapa(t)

e Steady state probability is defined ﬁspn(t) =0.

— Hence the above differential equations become the balance equations

20



3.1.2 References

e [12] Sharma (1990), Chapter 1

3.2 Stochastic processes

3.2.1 Birth-Death Process
e {N(t):t > 0} is a birth-death process if

)\j5t k=j+1
PrIN(t+dt) =KkN(t) = j] = pjot k=j-1 j,k=0,1,...
0 k-jl>2

e Birth-death process is a Markovian model, as its state depends only on the previous state
e Balance equation:

(Aj+Hj)Pj = Aj-1Pj-1+ Hj+1Pj+1
AoPo = p1P1

-1
. /\o)\l---/\j_j_ /\O)\l )\J 1
— Solution: pj = —————andpg= | 1+
Pi Uiz - - - Hj Po ( Jz; Halz--

3.2.2 Renewal process

e Renewal theory is describing the process of replacement. In a system, comiNdaemt its duty cycle, and it will
fail some time. Once it is failed, componeXt}- 1 will replace its role. Renewal theory is describing the partial
sum:

SN=X+Xo+-+ Xy
where each oX; is the random variable of the lifetime of componeént

e Number of renewaldd (t) = max{N > 0: Sy <t} is the number of renewals [0,t]

o If the lifetime of component is exponential, i.% has p.d.fAe~*t, and the time of thé&-th renewal is in Gamma
distribution:

tk—l
_ oAty k
fut) =e A k—1)!

o Alternatively, the probability that there are exactly n renewals in time inté@ygl is in Poisson distribution:

()\t)nef}\t
Pr{N=n} = ———
[o,tr){ n} n!

e The expected number of renewals per unit time equals to mean lifetime:

Iimw:}\

t—oo t

3.2.3 Reference

e [11] Ross (2003), Chapter 5, “The Exponential Distribution and the Poisson Process”; Chapter 6, “Continuous-
Time Markov Chains”

e [2] Akimaru and Konosuke (1999), Chapter 2, “Markovian Models”
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Chapter 4

Queueing Theory

4.1 Kendall Notation

To abbreviate the description of a general queueing system

A/B/C

— A, B: interarrival and service time distributions
— C: number of channels or service counters

A/B/C/D/E

— D: Buffer size, i.e. system capacity. Tandem queue megasoD
— E: Customer population

Common symbols for distributions:

— M: Markovian distribution, i.e. exponential

— D: Deterministic distribution

— Ex: Erlangk distribution

— Hyg: Hyper-exponential of ordec

— G: General distribution

— GI: General distribution with independent inter-arrival or service times (renewal)
— MMPP: Markov modulated Poisson process (non-renewal)

4.2 Different Queues

421 M/M/1

e Birth-Death process with state-indepentent arrival (birth) Aatend departure (death) rate

e Balance equation for system state (population in system):

ATh 1= UTh
A
Th = ﬁﬂh—lzpm—l
m=p"
> p"m=1
n=0
H=1-p
h=p"(1-p)
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n
o Expected population in syster&{N] = > kg =p/(1—p)
k=0

— Variance:Var[N] = p/(1—p)>?

¢ Expected waiting time in queue for tig+ 1)-th user:E[\Wy|m| = mE[§ = m/u

— Expected waiting timeE W] = Z TKEWgm=Kk] = Z krg = %Lp
k_
2p —p?
p3(1-p)?
— Probability of not waitingPrWy =0/ =1-p

* Variance:Var(\Wy| =

ef)\t)\ ktkfl

— Density function for waiting time givenk customers in front (Erlang-distribution): p(t) = W

— Waiting time distribution:
PriWg < X] = PriWg = 0] + Pri0 < Wy < X]

=(1-p) +i (PN = K PriE < X])

k 0
[Jt ktk 1
oo (oo [
d oY
Prig =] = (1 p(hA1)
:pm—%) B
2
— Expected queue length (by Little's lawgE[Ng] = AEWg] = 1o
e Expected sojourn time in system for tfr@+ 1)-th user:E[W]| = E[Wg] + R .
' YT e ul-p p-2
— Variance:Var|W] = 1
' (H=A)?

— Sojourn time distributionfr (t) = (u _;\)e—(u—)\)t
—cdfiFr(t)=1- g (U=t
— c.d.f. of waiting time:Ry = ]_7pe—(/>1—)\)t

e PASTA: Poisson Arrivals See Time Average

— Poisson arrival with raté

— System state at timtegiven an arrival occur ifft,t + At): M(t)
— System state at time N(t)

— PASTA:

Pr{M(t) = n} = P{N(t) = njarrival in (t,t + At)}
_ Pr{N(t) = n} Pr{arrival in (t,t +-At)}
B Pr{arrival in (t,t +At)}
=Pr{N(t) =n}

e Burke’s Theorem: Departure process of M/M/1 queue is Poisson with ratdependent of arrival process

— Poisson input implies Poisson output
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4.2.2 M/G/1 Queue with FCFS discipline

¢ Poisson arrival withh and i.i.d. service tim& with density functionfx (x)

e Analysis using Embedded Markov chain approach:

LetY, be the number of customers in the system immediately after the departure of customer

Let A, be the number of arrivals during the service time of custamer
— Markov chain:

—1+Ay1 YW >0
Yn+1 =
An+1 Yh = 0
= Yn +An+1 -uU (Yn)
whereU (x) is the unit step function such thidt{x) = 1 only if x > 0 andU (x) = 0 otherwise.
* This markov chain is ergodic with perigr= AE[X] < 1

Steady value of},: Taking limitn — o

Yn—&-l = Yn + An—s—l -U (Yn)
lim (E[¥o1]) = lim (E[Ya] +E[An1] — E[U (%))

EY] = E[Y] +E[A - E[U]
E[U] = E[A
1

— Expected value of?:

EY 2] = EIYZ + AR +U (Y0)? +2(YoAnr1 — YU (Yo) — AnsaU (Yn))]
= E[YZ]+E[AR,1]+EU (Y0)? + 2(E[YaAni 1] — E[YaU (Ya)] — E[An41U (Ya)])
E[Y? = E[Y?|+ E[A%| + E[U?] + 2E[YA — 2E[YU] — 2E[AU)]
= E[Y?] + E[A?] + E[U] 4 2E[Y]E[A] — 2E[Y] — 2E[AIE[U]
0= E[A?]+ 2E[Y] (E|A| — 1)+ E[U] (1— 2E[A])
— E[A’]+2E[Y] (p— 1) +p (1—2p)
[A°]

E[A’]+p—2p* E[A+2p-2p°—p E[N]+20(1-p)—p
2(1-p) 2(1-p) a 2(1-p)

E[Y] =

EU% =E[U] as1®?=1and0? =0

Y andA are independent, hen&gY Al = E[Y]|E[A]

E[YU]=E[Y]asU =0onlyifY=0andU =1if Y #£0

Ais defined only if there is a user to serve, heB¢aU] = E[AJE[U]

— Z-transform ofPr/A = n] is the Laplace transform di (t) with s= A (1—2):

*
*
*
*

/ A= n|X = t] fx (t)dt




- /memze’“fx(t)dt

0

= / e M2 £y (t)dt

0

Fx(A(1-2)

— E[A?] can be obtained b¥(2):

E[A?) = A"(2) |p=1 + A (2) |21
= A%E[X?]+AEX]
=A%EX+p

— SubstituteE[A?] to E[Y] and obtain the Pollaczek-Khinchin formula:

4.2.3 Waiting time in M/G/1 queue using Little’s Law
e Assume the average service time toXband the customers are arrived in Poisson process witfArate

e With respect to customeywe define:

— W: Waiting time in queue

— R;: Residual service time as seen by customdihat is the time for the on-going service to complete by the
epoch customadrarrives.R; = 0 if the queue is empty.

— X;: Service time received

— N;: Number of customers already in queue upon the arrival of customer

o Now we have:

i—1
E[W] :E[RHE{ > xj}

j=I-Ni

i—1
= E[Ri]+E{ > E[Xﬂ}

J=1-N;

= E[R] +XE[N]
Wy = R+ XN
e By Little’s law,
=R+ (AX)W,
R R
Wa=13x~ 1-p



4.2.4 Alternative way to derive Pollaczek-Khinchin formula in M/G/1 queue

e Let the residue service time &to ber(t) and there ardl(t) customers ever completed servicetby

e Time-averaged residue service time:

1t 1= X2
R=lim = dr=Jlim =% "¢
ot /0 ()t o 2

(Muzﬂﬁ4>

tow |t N(t) 2
1 . N . YNUx2
= —-lim lim
2 t—o t R N(t)
1
R=ZAE[X?
SAEIX?
e Hence the mean waiting time in queue:
R
Wy = 15
_ MEX
2(1-p)
— Evenifp <1, Wy =« is possible ifE [X?] = o, i.e. variance of service time is too large
. . ~ —~  AE[X?
— Sojourn timeW = X+Wy; =X+
K 2(1-p)
A2E[X?]
— Queue lengthNg = AWy = ————
ST 21—
o —  A2E[X? A2E[X?]
— Population in systemN = AW = AX + =p+
P Y 21-p) P 21-p)

¢ P-K formula: If the service model is known and we can calculEé?], we can obtaivy

2 P
—MIM/L E[X3 =2 = W=
X=4 T u(1-p)
1 p
—MID/ILEX3 == = W=-——" _
1= e "= 2u(i-p)

4.2.5 Mean-Value Analysis of M/G/1 FIFO queue

e Mean value analysis:
E[Wq] = E[NgJE[X] +E[R]

whereW is the queueing time\ is the population in queuX is the service time, anl is the remaining service
time where an empty queue yielgs= 0.

— The equation means the expected waiting time for a newly arriving customer is the sum of the expected
remaining service time of the customer in service, plus the expected service time to finish all customers in

front
o If the service time is exponentidt[R] = p - % Using Little's Law: E[Ng] = AEWg],
EWg] = E[NgJE[X] +E[R]

1 1
=AEW|—=+p—
[ q]“ Pu
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(1-P)EMA = p,
o If the service is generally distributeB[R] = p (E[ZX] n 225)(} ) Hence
EW] = E[NGJE[X] + E[R
— AEMGJEX] + p <E[2X] + zg[xzx])
= PE[Wg| +p¥ + g
(1-p)EMy) - PEXLEASK
cvi - 2

and the mean sojourn time W] = E[Wg] + E[X].

4.2.6 General queue: GI/G/c

e Multiserver queue witlt > 1 identical servers

e Customers: General independent interarrival times with pAdtf, arrival rate isA

— Expected service time&(9)
— Offered load:AE(S)
— Server utilization;o = AE(s)/c

e Random variables:

N(t): No. of customers in the system at tijencluding those in service

Ny(t): No. of customers in the queue at tithe

Dy: Delay in queue of the-th customer
— Ry: Sojourn time of ther-th customer

— V(t): The workload at time, i.e., the sum of service times of all customers in queue plus the sum of remaining
service times of the customers in service at ttme

e Definitions:

— Probability of system stategp; = tIim P{N({t)=j}

— Waiting time in queueW(x) = r!im Pr{Dy < x}, also, waiting time in systenW(x) = r!im Pr{R, < x}
e Averages in the long-run:

— lim ¥ [IN(u)du=E(N), andm%fg Ng(U)du= E(Ng)

t—oo

n n
— lim %kzlok: E(Wy), andrl]im)%gle:E(W)

n—oo

— lim L SV (u)du=E(V)

t—oo
o Little’s Law:
— E(Ng) = AE(W), andE(N) = AE(W)
— E(# busy servers= AE(S)
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* If pj is the probability of having users in the system,

E(# busy serveis= AE(S)
c-1 0
=Y ipj+cd_p
=0 j=c
1

e Expected amount of work in syster(V)

— Define function:v(t) as the remaining amount of service to complete for a particular user

* In waiting time,v(t) = Sas the amount of servic®is never started
* Receiving service for amount of timev(t) = S—x
x Just completed servicg(t) =S—S=0

— E(V) = AE( [y Sv(t)dt)

— By Little’s law, the amount of work in the system is the product of arrival rate and the amount of work due per
user

Wg+S
E(V)=A E(/ v(t)dt)

0

— AE(WgS+ /0 S(S— x)dt)

~ AEWQE(S) +E(;S)

— Hence E(V) = AE(W,)E(S) + 3E(S?)

4.2.7 References

e [14] Towsley (2002)
e [13] Tijms (1986), Chapter 4, Section 4.1
e [7] Nain (1998), Section 3

e [9] Prabhu (1997), Chapter 2, “Markovian Queueing Systems”; Chapter 3, “The Busy Period, Output and Queues
in Series”

4.3 Markovian Delay Systems

4.3.1 M/M/c queue with infinite buffer: Delay system
e ServicetimeE(S)=1/u
e Utilization: p = AE(S)/c
e Time-average probabilities: (same as customer-average probabilities)
Apj—1=min(j,c)u j=1,2,...
@ Ppp 0<j<c-1
(ep)

clci-¢

Lok (eor |
DO{Z K +c!(1—p)}

k=0

" pj =

Po j=>c
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e Delay probability:My = Z pj =

] =C

— Erlang-C, a.k.a. Erlang’s delay formula (blocked-calls-held system)

= )% ~ p
e Average queue sizé&(Lq) Z j—op d1—p)? po = 1—an

j=c

e If FIFO, the waiting-time distribution is drived as follows:

If N<c Ng=0

If N > ¢, service rate from the point of view of the systecy

Distribution of service rate (inter-departure distributiofjx) = e
eﬁC“X(C[JX)k
ki

Given there arg users in queue, for durationthe probability that there are less thipmsers leave the system:
i

Probability thatk users completed service in duration lengtP(k) =

eﬁCHX(ClJX)k

— k!

— Distribution of system populatioN: pj, which corresponding tpusers in the system arjd- c users in queue

CUX
— Pr{Wy > x} = Z pj Z % Mwe HA-PX for x > 0.
j=c k=0 ’

— Pr{Wy =0} = 1— My

(cp)® Mw

— Average delayE (W) = dcu(1—p)

1_ w1

poocu(l-p) p

— Average queue length is provided by Little's formuENg) = A E(Wg)
or average system population is providedEffN) = AE(W)

— Average sojourn timeE(W) = E(W,) +

4.3.2 M/M/cleo/N queue: Limited customer pool (need verify)

Arrival at staten < N: A, = (N—n)A

Exponential service time with me&{X] =1/u

nu 0<n<s
su s<n

System service rate at statepp = {

Balance equations

((N=}A+min(j,s)u) pj = (N—j+1)Apj_1+min(j +1,S)upj1

(n)p”po 0<n<s

— p={\N

! 1n cn<N
3P ggsP'P ssn<

= {E (e (V)i

withp =A/p.
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4.3.3 M/D/c queue
e Determinstic departure with service tirBe
e Utilization: p=AD/c

e Derivation of steady probability

pk(t): Probability of havind users at time

D)=) m(t)e*P
k0

* Rationale:)", (Prob.k < c users in the syste)fiProb. next arrival occur ait > D)

) J ~AD j—k
Z Pr(t A e*2(4D)! +y Pc+k(t)e-(:\kD))!J

— (J

* Ratlonale.

1. If there arek < c users, upon+ D, all the existing users will complete the service and leave, hence
we need to havé arrivals in duratiorD

2. If there arec+ k users, there will be users leave anklremains, thus we need to haye k arrivals
in durationD.

In the long runilim P (t) = P
[
Po = (Z pk) e AP
k=0
c _AD i J —AD j—k
e "P(AD)/ e "°(AD)’!
pi={> .(|)+ch+k(-(_k)),
k=0 I k=1 : '

e Z-transform:

Think {po, p1, P2, ...} as a sequence, the z-transfornP(g Z sz'

Partial sum starting witlpc: Py(2) = ZT:C pjzi—¢

Expected populatiorE(N) = Z ipj =

Ms

Expected queue lengtEE(Ng) = » (j—c)pj = P4(1)

j=c

e Derivation ofE(N) using z-transform:

c ,)\D j 7)\D —k
p; = ( k) )\D +Z Pe+k D))J
k:
_ o c _AD j —AD j—k .
S b =Y (zpk> 200y j<fD>‘zJ+zpc+ke ool

e)

j=0 j=0 U \k=0 k=1
o c i o ] j—k .
P2 = (eADZpk (’\.[,)>IZJ+ZZ(pc+ke*AD) (A.[i)lj( -2
= s j! et (j—k)!
c o0 i o ] j—k
(g fmernt
ko /i b j=1k=1 -k
e ;e _ ADz)i—K
— =1 j=



= e—)‘ D(1-2) Z Pk + i (pc+ke_)\ Dzk> eADz
k=0 k=1
c 0

7)\Dlzzpk_~_zp+ke 1z

C

AD(1-2) Z P+ e D2 Z Dok
k=1

k=0

(o4 0
AD(-7) (Z Pk + Z Dc+k2k>
k=0 k=1
Z pc+kzc+k>

C 00
P(2)£ = e P12 (ZCZ Pk
k=0 k=1

C C
=g P2 (fz Pk (P(Z) - pk2k>>
k=0 k=0
C C
(ZC Z Pk Z Pz )
0 k=0
e AP (ZCZ P — E pkzk>

0
72 — e AD(1- z)

C C
> P = Y P
k=0 k=0

z£e’b(1-9 1

+
+
P(Z)ZC - P(Z)e—)\ D(1-2) _ e—)\ D(1-2) o

P(2) =

0
— Note: Change of second summation in (4.1) is becguse- 0
k=1

— Note: In (4.2), by enumeration,

o ]
ZZTjk =T + Taa+To2 + Taa+Ta2+Taz + ...

j=1k=1
=Tu+Ta+Taa+... + Toa+Te2+... + Taz+Tag+...
hence we can hav§: Z Tk = Z ZTJk
j=1k=1 k=

— Hence the differentiation of z-transform.

P2)=) piZ +ZP(2)

P(2)= pjid ' +cZ P2+ ZPy(2)

[y

(2002 1) (5 ez - 3 pkdt) - (X p - Y- pdt) (2 1P ADetol-)
_ k=0 k=0 k=0 k=0

(£eAP(1-2) —1)°
c—1
pjZ - cE Py (2) + £P(2)
=1
<cp>2c<c1>+§z[c<c (- 1]p,
/ o 1=
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e Crommelin’s formula [3] fo:

X mD)]jc+c—l—i

c-1 m
P{Wg <x} =) Q Zef\ x-mD)
0 j=

i= JC+c 1—i)!
! . ) L
= N H- x( [( J)D—x])( j)c+c—1—i
F’I’{V\/q < X} E E Qe A[(m+])D—x] I[I(H— J) H+ i]!

j=1i=

i
— whereQ; = ) pj, andmsatisfiesnD < x < (m+1)D
j=0

4.3.4 References

e [13], Chapter 4, Sections 4.2 and 4.4

e [9], Chapter 2, “Markovian Queueing Systems”; Chapter 3, “The Busy Period, Output and Queues in Series”;
Chapter 7, “The System M/G/1, Priority Systems”; Chapter 8, “The System GI/G/1, Imbedded Markov Chains”

4.4 Markovian Loss Systems

441 M/M/1/c

e Poisson arrival with rata

e Balance equation: Same as M/M/1, but witke ¢

h=pTh1=p"T

- IfA#p,
c
1— c+1
o= =1
k=0 p
1-p
Tb_ pC+l
1*9
Th= 1— pc+1p
- If A=y,

an T@Zp (c+1)mp=1

e Expected number of users in the system:

- IfFA#pu,
N]:ka

C
-y 12P ok
C+1
par e

p (c+1)pcHt
- 17p 1—pc+l
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—If A=y,

e Blocking probability: 1%

e Throughput (i.e. real arrival){l— mo)u = (1— 1¢)A
_ _EN]

*EM=T"mn

442 M/M/clc

e Poisson arrival and exponential service time with no buffer

e Balance equation:

pi(t+3t) = (1-ASt— judt)pj(t) + AStpi_1(t) + (j + Dudtpa(t)
— Di(O)+ [~ (A + J1)Pj(O) + A pj_a(t) + (j + Dppja(t)] Bt

W = —(A+i)pj ) +Apj-1(t) + (i + 1)upjsa(t)

(;jt pj(t) = —(A+ju)pj(t) +Apj-1(t) + (j + 1) upj+a(t)

d
t—oo: apj(t)zo
=—(A+ju)pj+Apj-1+(j+1)Upji1
A+ iju)p;=Apj—1+(j+1)upj+1

e Recurrence formula:

p-1=0
Apo=HUp1
p1=(A/H)po
A
Pj= ﬂ Pj-1
MMV
j!
— Definingp = A /p and normalizing ; pj = 1, we have:

- (£2)

o g
I el

pi = Po

Pi==r

— The formula forp; is known as the Erlang-B formula (blocked-calls-cleared system):

p° [
= |k
" Lk=0 " J

C. ik
— If cislarge,}’ % = e P hence Erlang distribution becomes Poisson distribution:
k=0

([ p! pk\ ple*
Qﬂ<p w) il
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443 M/M/slc

e Only c > smakes sense, otherwise it is only a M/M/c/c queue

e Buffer for at mostc — s customers, additional arrivals will be blocked

A if0<n<c

— Effective arrival rate: .
0 otherwise

nu ifo<n<s

— Departure rate{ sy otherwise

¢ By defining the balance equation, we have

A+ju)p;=Apj—1+(j+1Hpj+1
(A +sH)pj = Apj—1+SUPj+1
SHPe = APe-1
Hp1=Apo

which yields the recurrence formula:

4.4.4 M/M/w queue

Takingc — oo, M/M/c/c will become M/M#ko

Balance equation:

APj_1=jHUP;

A
pj = mpjfl

(A1
pPj = H ﬂpo

Solution:

Waiting time is zero

445 Reference
e [2], Chapter 2

e [9], Chapter 4, “Erlangian Queueing Systems”
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(i<s9)
(s<i<o

fo<n<s

ifs<n<c

In steady state, the system population is in Poisson distribution with B@dn=A/u =p

Average sojourn time equals to average service tigjdl] = AE[§ = E[§=1/u



4.5 Queue with limited pool of customers

4.5.1 M/M/clc/n queue (with Quasi-random Input)

e A queue with capacitg and finite sources afinlets. Each inlet has arrival with rafe

e When there ar& calls exist in the system, only— k inlets are idle, hence the effective arrival rate to the system is
(n—Kk)A

e Balance equations:
[(n=A+julpj=(n=j+DApj1+ (i + Dupjr1

NAPo = UPp1
cupc=(n—c+1)Apc_1

— Definingp=A/u
— Recurrence solution:

—j+DA —j+1
b = U‘J!:)pjl: (”Jj+>Ppk1
c -1
pj = (?)p" > (?)p‘] 4.3)
i=0

— The distributionp; is known as thd=ngset distribution
e If n— oo, Engset distribution will converge to Erlang distribution:

(n)pj _ nin—1)---(n—j+1) (np)] - (np)]

i ni j! j!

— Effective arrival ash — «: nA

— Service rateu
— nA/u = np is the effective system utilization

e If n <c, Engset distributionp; will become binomial

— Denominator in (4. 3)2( Vo' = zn:( Vo' = (1+p)"

Steady probabilit (1 N (_p Y 1-_P "
- r ilityp; = NP __P
cady probanityp, = () o'1+07= (1) (155) (1-17)

e Upon the arrival of a call arrival, the probability of havikgalls exist in the system as seen by the arriving call is
given by:

i = Prlk calls existarrival in dt|
Prik calls existPr{arrival in ot|k calls exis}

EC: Prfi calls existPr{arrival in ot|i calls exist
i=0
( )PKpo x (n—Kk)A &t
C
(Mp'pox (n—i)Adt
”;1)p PonA 8t
n )pipon/\ ot
n;l)pk
2 (")e!

¥
o

—

&

(4.4)

||Mo/\

— Let rg(n) be (4.4) to denote the dependence of number of imets
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— Tk(n) = p(n—1)
— Asn— oo, 1§ = py, as PASTA expected

e If n> c, the probability of blocking calls is given by

e (") [ o]

— Engset loss formula, the probability of an arriving calls found blocked (call congestion probability)
— pc is the probability that an outside observer found the system is fully occupied (time congestion probability)
— Expected number of calls in the system:

C c-1
EIN] = ipi=ponp > <n7 1)p‘
i=0 i=0

— Offered load:

c

n—1\ ;

poffered:E[n—N]p:pOHPE ( i >PI
i=0

— Blocking probability is also given b = Poftered— E[N]
Poffered
i i litgoerea— —°——
Offered load in terms of blocking probabilityiysereqd = T o8

¢ Note: Forthe same parameters, variance of distribution decreases as the order Poisson > Erlang > Engset > binomial.

452 M/M/s/cin

e Working as a M/M/s/c queue with the size of customer poahbe

e Balance equations:

[(N=]PA+jupj=(n—j+DApj_1+ (] +1)HPj+1 (i<s9
Pj = (N—j+1)Apj-1+SUPj+1 (s<j<co
SUPe = (N—C+1)Apc1
NA Po = UP1

e Solution:

j ; . .
Pi = {po(?) () =Po()e! fo<j<s
J|

po(§) s (4) = po() dis ifs<i<c

45.3 M/M/sfo/n

e Infinite buffer:c — «

e Balance equations:

[(N=DA+jupj=M—j+DApj-1+(j+1)Upj+1 (j<s9
pj=(N—j+1)Apj_1+SUpj1 (s<j<n
nA po = Up1
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e Solution:
i : . .
%) :pp(?)pl fo<j<s

i) =5 o=
po(7) s () = po(D s ifs<j<n

e Same effect as M/M/s/c/n queue wit

&2

n

45.4 Reference

e [9], Chapter 7, “The System M/G/1, Priority Systems”; Chapter 8, “The System GI/G/1, Imbedded Markov Chains”

4.6 Multi-class Queue

4.6.1 Batch arrival: M X//M/s/s loss system, with PBAS

e X: Arandom variable representing the batch size
e PBAS: Partial batch acceptance strategy

e Symbols:

p;: Probability thatj calls exist at any arbitrary instan
P(2) = 3 Zpj: Generating function op;
j=0

— bi = Pr{X =i]: Probability of batch size

- B(2) = 3 ZIbj: Generating function d

j=0
— @ =) _ bj: Probability ofX > i
j=i
— A: Batch arrival rate
e Balance equation:
j
A+imp=A> pbji+(j+Dupjya 0<j<s
i=0
S
SUPs=A ) Pt

i=0

1
. X
— Recurrence solutiorp; = i > b
i—0

4.6.2 Processor Sharing Queue with Mixed traffic

e Two classes of jobg:=1,2
e Fraction of jobs:ai: a1+ a2 =1
e Exponential service time with medn i (i = 1,2)

— AssumedL/uy > 1/
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e Density function of service timex:
fx(t) = arpne M+ azppe 2t >0
— Conditional probability:

ale*IJﬂ
16 M e HeT
ale(l»lz—ﬂl)r

Pri = 1|X > 1]

- oqell2=H)T 4 g5
a1

a+ax

- PiX<tli=1=1-eH' - PriX>tli=1=eH!

ax

e Processor sharing queuenlfobs in queue, each receives service with gata simultaneously, wherg is a system
parameter of the queue

e State space(Ni, N») whereNz, N, are number of jobs of class 1 and class 2 respectively
— pij =PriNy =i, No = ]

e Balance equation:

. i . ' .
()\ +1{i > O}m[.l]_-i-l{j > O}Hjj“2> pij = aiAl{i>0}pi_1;

+02AL{j > 0}pij-1
i+1 o

erﬂlpwm
j+1

+mu2pi,j+l

(@A ‘(w)"aﬂﬂ
p”(m) 12 TH

e The processor sharing queue is same as M/M/1 queue:

with solution:

n
PIN=n]=> pini
i—0

= (AE[X])" poo

4.6.3 General Processor Sharing Queue

o Poisson arrival with raté

e Generali. i. d. service time$ with density functionfx (x), c.d.f. Fx(x) and mearE[X]
e Service ratel/n for each customer if there arecustomers in the system

e System population at time N(t)

e State of the systenX(t) = (X1(t), Xa(t), ..., Xy@) (1)) whereX(t) is the remaining service time oth customer
in the system

e Probability function:f,(t,x1,...,%) = PIN(t) = n, X(t) = (X1,...,X%)]

e Balance equationfy(t + Ot, X1, ..., Xy) in terms of fy(t, X1, ..., Xm)

ot o
fn(t+5t,X]_,...,Xn) == (1—A6t)fn(t,X]_+F,,Xn+ﬁ)
n ot
n+l ot ot ot ot
+§/0\ fn+1(t7Xl+ n+17~”ux|—l+ n_|_17y7X|+ n+17°"7xn+ n+1)dy
n
ot ot ot ot
+)\5tzfX(XI)fn—l(t7X1+ﬁ,u-,)ﬂ_l-‘rﬁ,x|+1+ﬁ’___7xn+ﬁ)

i=0
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n
— Approximation by using derivatived;(t, x; + %, o X+ g) = fa(t,X1,..., %) + W% +0(dt)
i=1 !

— Simplifying integral:

ot

[ ot ot ot ot ot
fapa(t — X1t — YN ——, ——)dy= fp1(t,X1,...,%-1,0,X%;,... — ot
/(; n+1( aXl+n+17 7XI l+n+17yaxl+n+17 7Xn+n+1) y n+1( 7X17 7X| 1 7XI7 axn)n+1+0( )
ot ot ot
- 5tfn—1(t,X1+ﬁ,.--,Xi—1+ XL X ﬁ) = Ot fy 1(t,X1,...,%-1,Xi11,...,%) +0(At)

— Hence the balance equation above can be rewritten as:

n
fa(t+ 8t Xe, ..., %) = (1—A5t)fn(t=><1=~~’xn)+(1_’\5t)z%%ﬂ
i=1
n ot
+§fn+1(tﬂxla"'aXi—1707Xi7"'7Xn)m

n
HASEY fx (%) Fo 1 (tXe, - X1, X1, %)

i=0
+o(ot)
— Partial differential equations:

dfn 101,

— = =Afpt,xg,... 1-Adt -

(9t n( 7X17 aXn)"'( 5 ) s n dXi

n 1
+§fn+l(taxla'"7Xi71707Xiv"';Xn)n+1

n

+A Z fx (%) a2 (t, X1, .., X1, X1, -+, Xn)
i—0
=0

where the partial derivative w.r.t. timteshould be zero because the functigrshould converge in steady state
— Solution for the partial differential equation above is:

fa(xa, ... %) = (1= )A" [ [ (1 Fx(x))

i=1
x We can verify that:f 1(X1, ..., %-1,0,%, ..., Xnt1) = A fa(X1, ..., %n)

dfn
o= —(1=p)A"x 06) JT(@ = Fx(x))) = A fx (%) faa(Xa, - X1, X4, %)
X i

— Probability ofN = nin steady state:
n o0
PN =] = (1=p)A" ][ | (1~ Fex))0x
i=1

= (1-pA"[[EX
i=1

=(1-p)p"

4.6.4 M/G/1 Non-preemptive Priority Service Queue

e Classesi =1,2,...,nwherei < j means classgets priority overj

e Service time of class X;

n
e Poisson arrival with rat@; for classi. FurtherA = Z)\i
i=1
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e Queueing time of a classustomer is the sum of:

1. Remaining service time of the customer in service (if any)
2. Service time of class 1, 2, .i.customers already in queue

3. Service time of class 1, 2, .i+ 1 customers who arrive while this customer is waiting in queue

an

t
E[R = lim 1 R(t)dt = I|m
t—oo t t—oo t
0 i= 1 k 1
Ni(t) y 2
L1 Xk
—ime2 2
i=1 k=1
— i " N(t) XA 1
— t N2
i=1 k=1 !
n Ni(t) y 2
_iim S N 2= Akl

e Equation:

e At any time instant, the residue life tinkeof the customer currently in service is given by: (c.f. section 4.2.4)

(4.5)



4.6.5 M/G/1 Preemptive Resume Priority Queue
e Parameters: same as those in M/G/1 non-preemtive priority queue

e Sojourn time of a clasiscustomer is the sum of:

1. Time to clear all class 1, 2, .i.customers already in the system upon arrival (referrefl)as

2. Time to clear all preemptive class 1, 2,i.-, 1 customers who arrive before this customer completes
3. Service time of this customer

e Equation:
i—1
EWO] = ET]+ Y AEWEXJ +E[X]
k=1
i-1
<1Zpk> EW®"] = E[T] +E[X]
k=1
Ew0)] = E[Ti] tlE[Xi]
1->
k=1
— E[Ti] is given by: '
_ ' 2
L MEXE kzz:l)\kE[Xk]
Elml = 2(1-p) i
k= _
FER 21
— Hence the sojourn time:
> MED)
EWO)] = S L _EX

4.6.6 Reference

[2], Chapter 4

(14]

[7], Section 3

[9], Chapter 5, “Priority Systems”; Chapter 7, “The System M/G/1, Priority Systems”

4.7 Matrix-Geometric Technique

4.7.1 M/M/1 with different arrival rates
e Arrival rate: A with the system is non-empty aid with the system is empty

e Balance equation:

A'po=pup
(A+H)pr=A"po+ Up2
A+p)pj=Apj-1+HUpj1 =273,

yields the solutionp; = pI~1p;
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¢ Infinitesimal generator:

A’ Al 0 0
U —A—pu A 0
Q=| O u —A—u A
0 0 u —-A—u
¢ Probabilitiesp; satisfies:
Po+ > pj=1
=1
potpy_plt=1
j=1
p1
Po+ 1-p- 1

Hencepp and p; should satisfies:
(& —0we) ()= (0)
5 —A+w+pr)\p) 0
e Expected number of customers in queue:

E[Ng =) (i—1)pj
i—1

Py (i—1pt
j=1

=Pz

(1-p)?

4.7.2 Hyperexponential queues: M/H/1

r
e H; density function:fx (t) = Y axue Mt with >, o =1
k=1

e Consider a queue with arrival ratasif queue empty and if queue non-emptytd, service time distribution with
parameterst, i1, o, Lo

— Service class: 1, 2 for referring, and L respectively, a.k.a. exponential stage
— Define system state &g,s) wheren is the number of users in the system aid the service class of the job

in service
— Queue empty(0,0)

¢ Infinitesimal generator:

-A  XNa Na 0 0 0 0
Ha —A - Hi 0 A 0 0 0
w0 —A-m O A 0 0 oo Bor /SO 8
0 am ap —A—p 0 A 0 A Ao
Q= 0 ay ay 0 7/\_7 U2 0 A = 0 02 Al A
0 0 0 o apl —A—Ih 0 2 M
0 0 0 aLp E[Jz 0 —A - Ho : : :

— H1 A0 A= 0
WhereBoo:(—A’),Bm:(/\’a AMa )'Blo_<[.12>'AO—<O /\),Al—( 0 _/\_IJ2>:A2—

(alll 02#1)
apz atp
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— Balance equation:

PoBoo+ P1B1o=0
PoBo1+ P1AL + p2A2 =0
Pj-1A0+ PjAL + Pj+1A2 =0

forj>2

e Solution: p; = p;RI~?

-p=(P0 Pr P2 -);pQ=0
— GivesAg+RA +R2A, =0
— Incorporate with normalization condition,

(pO Pl) ((l _ é)—le IA(_I_EBFO%AQ) = (1 0)

e [terative algorithm for solvindR:

1. SetRy=0
2. Rap1= (—Ao—RaA9)A[ !
3. Ifthe system is ergodicri]im R.=R

e Expected number of customers in queue:

[M] s

ENgJ =) (i—1)pje
j=1
=p) (i-DR e
j=1
= mR(I-R) %
4.7.3 General QBD queues
e General quasi birth death queues:

Boo Bor 0 O O

Bio Biu Ao 0 O

Boo Baa A Ap O

Q=B B A A A

A A

Bso Bs1 Az

whereBgg is m' x m', Bg1is m' x m, Bpg is mx n, others arenx m

— State space(i, j) wherei is the level and is the phase
* m phases in level 0 angh phases in other levels

e Alongvectorp=[ po p1 P2 --- |wherepo=[ Pox Poz ‘-~ Pom ] andpi=[ pi1 Ppi
then

pQ=0
with balance equation

> pjakA=0 j>2
k=0
= pj=pR ™

where Y R¢A, = 0.
k=0
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e DenoteM*to be the matrixM with leftmost column removed, then we have
Boo Bo1
(Po p1) (i R<1By, i Rlekl) =0
k=1 k=1
1 Bgo Bo1
(pO pl) <(| _R)—le |:|§:le_18|(0:|* kio:le_lBkl) = (1 0)

4.7.3.1 Markov Modulated Poisson Process (MMPP)

e A k-state CTMC{X(t)} with transition rates of — j denoted withg;

e Ifin stateX(t) = n, the arrival rate to the queueis

— Arrival process is Poisson with ra ;)
— The CTMC{X(t)} modulates the arrival

e The queue with arrival ratéy ;) and exponential service times with parameter

— System state(n,s) with njobs in the system ank(t) = sis the state of the modulating MC
— Infinitesimal generator:

Boo A0 0 O
A AL Ay O
Q=0 A A A
0 0 A A
—01 a2 -+ Ak -0 —H aiz gk
a1 —02 - Ak ) ag1 —ox—H - ax
whereBoo: . i . ,Ao:d|ag( )\1 /\k ),A]_: . . i
&1 &2 - 0k &1 &2 o —O0k—H
Ap=diag( p - H) ai=Ait )&
j#i

e |t can be solved by Matrix-Geometric techniques

4.7.4 Reference

e [14], “More General Systems”

e [8]
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Chapter 5

Queueing Networks

5.1 Queueing Networks

5.1.1 Definitions
e Open and closed system:

Closed systemTotal number of customers in the system at all time is a constant, i.e. no external arrival or leaving
the system

Open system Customers arrive from an external source and may leave the system
e Markovian Network

— A network withN nodes,
— Customer arrive from external to (randomly) nojdas a Poisson process with rate

— Service offered (exponentially) at nogevith rate u;(n;j) wheren; is the number of customers at this node.
In particular,u;j(0) = 0

— Upon completion, the customer transit from ngd® nodek with probability pj, or leaves the system with
probabilityg; =1— > pj
K

*

Transition is independent of history (hence Markovian)
Switching probability:pjx wherej # k

Probability of instantaneous feedbagk;

* The stochastic matrikpjx)nxn is irreducible and aperiodic

*

*

— Queue discipline is FCFS

5.1.2 Markovian Network

5.1.2.1 Open Markovian network

e Construct the queue length vectar= (ny,ny,--- ,ny), the transition and transition rates are:

(nl’...7nj,...,nN)_>(n17...,nj+17...’nN) : )\]
(Ng, -+, Ny, ) — (N, nj— 1 nn) 0 pj(my)g;
(nla"'vnja"',nkv"'7nN)_>(n17"'anj_17"'7nk+la"'7nN) : IJJ(mJ)ka

e Definingg(n,m) be the rate of transition from queue length vecetdo vectorm, the total rate of leaving stateis
therefore:

r(n) =3 q(n,m)
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N

i+ Hi(mj)g J+ZZM m;) Pjk

j=1 j=1 k#j

N

Z ( Zplk)JFZZ“J m;) Pk
=1

J=1 k#j

I
]= &MZ &MZ

II
=

[Aj 4 i (M) (1= pjj)]

and the balance equation is

r(n)p(n) =Y _ p(m)g(m,n)

orequivalently:  p(n) (ZAK+ZIJk(nk)> =S APl M- 1,-0)
k k K
+ 3 o+ 1)p(--- g+ L, -
k

+ZZ PkjHk(M+2)p(--+ s Me+1,-+,nj—1,--+)
ko

¢ The effective arrival ratey to nodej satisfies: (which is known as the “traffic equation”)

N
a = A+ Y ajpj
-1

¢ With k; being is the normalization constant to makep;(n) = 1, the stationary distribution of queue length is:
n

p(ng, -+ ,nn) = pa(n1)p2(n2) - Pn (M)
with the stationary distribution of the individual queue as:

(aj)™
K (i (2) - pi(nj)

pj(Nnj) =K

5.1.2.2 Closed Markovian network

e For closed networks, there are finite and constant number of custiriarthe system

¢ Due to no external arrival and departurds= g; = 0, and the balance equation becomes:

n)=">_p(m)g(m,n)

N N
Do) L=pi)PC--nj k) = >0 p(NF1)PRP(-- N L =1,

i=1 =1 k]

¢ The effective arrival raterj to nodej satisfies: (due tdy = 0)
N
k= Z ajPijk
j=1

e With k being is the normalization constant to makep(m) = 1, the stationary distribution of queue length is:
m

N
o (aj)
p(Ng, -, N) kjljl Hi(DH;(2) - pj(ng)
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5.1.3 Quasi-reversibility

For an open Markovian network, the departure at every node is independent Poisson process. Hence thef_t(epnrture
a time-reverse of queue length proc€Xs), this feature is known as “quasi-reversibility” t) = Q(—t) corresponds
to a hypothetical queueing network.

An open Markovian networkA , i1, P) with:

o A= (A17A27"' 7)\N)

o U= (“17“27"' 7“N)

e P=(Pi)nxN
which gives queue length proce§d(t)} has the time-reversed proce€3(t)} that correspond to the netwo(ﬁ,ﬁ,ﬁ’)
where:

o A= ajq

o [ = H

5. — Akp.

5.1.4 Jackson Network

e The difficulty with analysis of network is that the inter-arrival time after traversing the first queue are correlated
with the queue length and not necessary Poisson

— Jackson’s theorem: The correlation is eliminated and randomization is used to divide traffic among different
routes, such that the network can be analyzed

— Result from J. R. Jackson in 1957

— The significance of Jackson’s theorem is the independence among the number of customers at distinct queues
at a given time, even if the overall arrival is not a Poisson process.

5.1.4.1 Open Jackson Network

e Jackson network is a special case of open Markovian net@brj, P) such that each node of the network is a
M/M/s queue withs, identical servers at node

— There are totalN nodes
N

— The actual arrival rate at each node is same as Markovian netewpek:Ay, + Z ajpjk
j=1

— Utilization factor of each queugy = ;—;

e The solution of the balance equation is: (by Jackson’s theorem)

N
p(n, -+, nN) = pa(ne) p2(n2) -+~ p () = [ ] ow(ni)
ket

where:
_ %
Pe= SkHik
1 (o \™
Pe(0)— <") 0< N < s
_ N \ Mk
Pi(Ni) = a 1 a0\ ™
P(S)P ™ = Pl )nk!sK”k‘SK (uk) Nk > S
_Sk71 1 (0% Mk 1 (00%% Sk -
o[£ () s (2)
oMk \ Ky S (1= i) \ Hi
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— If the network is comprises of only M/M/1 queues, ig = 1 for all k, Jackson’s Theorem becomes:
N N A A Nk
o, m) = [T ong =TT (1-3) (1)
k=1 k=1 H Hi

— The solution forp(n) is called a “product-form” solution

5.1.4.2 Closed Jackson Network

N
e SettingAx = 0in open Jackson network, we have the arrival rate at ikdzkcomesi, = Z a;Pjk
j=1

— FixedM users in the network at any time
— The network ha®\ nodes

e The solution of the balance equation is: (by Jackson’s theorem)

1y (@)™
Pn) = G 1 (Hﬂkluk(u))

k=1

where:

N
&{n: (ny,nz,...,ny) € {0,1,....M}N A anM}
k=1

Gnwm = Z ﬁ (]%)

neS k=1 u
uy O<u< s
pe(u) = ¢
SkMk U2 S

G is a normalization constant ai$y is a set

— If the network is comprises of only M/M/1 queues, ig = 1 for all k, it becomes:

where:

N
S = {n: (ny,ng,....,nn) € {0,1,... ,MIN A an: M}
k=1
N Nk
a
sw= 11 ()
nes i1 \Hk
¢ In closed Jackson network, the computation of the normalization cor@tiariedious due to the size of the St

— J. Buzen game a convolution algorithm for the computation in 1973

5.1.4.3 Buzen’s Convolution Algorithm

e GivenM = 0, then the size 0§, is 1 and henc&ym = Gno =1

e GivenN = 1, then the Jackson’s network is a single queue with

B B (a;)™ . (al)M
Gum =Gim = % Tt pa(u) TN pa(u)



e For any generdN, M pair, we have:

N—-1 .
(an)™ (an)'
g (Hﬂkl Hi(u) ﬂ <HL1 uN(U)>

5.1.5 Multi-class Jackson Network

e Class definition:

5.1.6 BCMP Network

5.1.7 Reference

e [9], Chapter 6, “Queueing Networks”

e [7], Section 4, “Single Class Queueing Networks”
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