Statistics

Adrian Sai-wah Tam

March 31, 2006

1 Terminologies

- Descriptive statistics: Statistics that using pictures, etc to present data
- Inferential statistics: Statistics that conclude something form the data
- Measurements:
 - Ratio: Measurement with zero
 - Interval: Measurement without zero
 - Ordinal: Ordering
 - Nominal: Category identification
- Population: Everything in your interest
- Sample: The items that you examined/measured
- Sample size (*n*): The size of the sample
- Data (x_i) : The information (value) obtained from sample
- Random variables (X): The name of the information

• *r*-th moment of
$$X: \overline{x^r} = E[X^r] = \frac{1}{n} \sum_{i=1}^n x^i$$

- a.k.a. r-th moment about zero

• *r*-th central moment of *X*:
$$m_r = E[(X - \bar{x})^r] = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$

- a.k.a. *r*-th moment about the mean \bar{x}
- Dimensionless moment: $\alpha_r = m_r / \sqrt{m_2^r}$
- Skewness
 - Pearson's first coefficients of skewness: Skewness = $\frac{\text{mean} \text{mode}}{\text{standard deviation}}$
 - Standard deviation 3(mean – median)
 - Pearson's second coefficients of skewness: Skewness = $\frac{3(\text{mean} \text{median})}{\text{standard deviation}}$
 - Skewness is positive if the distribution is skewed to the right, i.e. having a longer tail to the right than to the left
 - * known as right-skewed
 - * the converse: left-skewed, with negative skewness
 - Moment coefficient of skewness: $\alpha_3 = m_3 / \sqrt{m_2^3}$
- Kurtosis:
 - The degree of peakedness of a distribution, relative to normal distribution
 - leptokurtic: having a relatively high peak
 - *platykurtic*: flat-topped
 - mesokurtic: just like normal distribution, nor very peaked or very flat-topped
 - Moment coefficient of kurtosis: $\alpha_4 = m_4/m_2^2$

Sample vs Population

- Sample mean (\bar{x}) : Mean obtained from samples, a known fact after survey. $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Population mean (μ_X): Mean obtained from examination of the population, usually unknown but interested to know.

• Population variance:
$$\sigma_X^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \mu_X)^2$$

- Of finite population N
- Also known as the second central moment of X

• Sample variance:
$$s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

- As an estimate of true population variance σ_X^2

- Also known as the unbiased estimator and
$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2$$
 is called the biased estimator

- * As \bar{X} is used as the mean instead of μ , the biased estimator is underestimating the true variance because there are raw counts of repeated elements
- * Proof of "unbiased": $E[s_X^2] = E[(x \mu_X)^2]$

	Sample	Population
Size	п	Ν
Mean	$\bar{x} = \frac{1}{n} \sum x$	$\mu = \frac{1}{N} \sum x$
Variance	$s^2 = \frac{1}{n-1}\sum (x - \bar{x})^2$	$\sigma^2 = \frac{1}{N} \sum (x - \mu)^2$
Standard Deviation	$s = \sqrt{s^2}$	$\sigma=\sqrt{\sigma^2}$
Coefficient of Variation	$CV = s/\bar{x}$	$\mathit{CV} = \mu / \sigma$
z-Score	$z = (x - \bar{x})/s$	$z = (x - \mu)/\sigma$

2 Identities

$$\operatorname{var}[X] = E[(X - \mu_X)^2]$$

$$\operatorname{cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

$$\operatorname{var}[aX + b] = a^2 \operatorname{var}[X]$$

$$\operatorname{var}[aX + bY] = a^2 \operatorname{var}[X] + b^2 \operatorname{var}[Y] + 2ab \operatorname{cov}(X, Y)$$

$$E[aX + bY] = aE[X] + bE[Y]$$

3 Normal Distribution

• Standard normal distribution: $f(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$

$$- \mu = 0, \sigma = 1$$

• Commutative distribution of standard normal: $F(t) = \Pr[z \le t] = \int_{-\infty}^{t} f(z) dz$

- One-tail:
$$P(t) = \int_{-\infty}^{t} f(z)dz = 1 - \frac{1}{2}\operatorname{erfc}\left(\frac{t}{\sqrt{2}}\right)$$

- Two-tail: $Q(t) = \int_{-t}^{t} f(z)dz = \operatorname{erf}\left(\frac{t}{\sqrt{2}}\right)$
- $\operatorname{erf}(x) = 1 - \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}}dt$

- General normal distribution: $N(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
 - Converting general normal distribution to standard normal distribution: $z = \frac{x \mu}{\sigma}$
 - There are two points of inflexion: $\frac{d^2}{dx^2}N(x;\mu,\sigma) = 0$ at $x = \mu \pm \sigma$

3.1 Facts of Standard Distributions

- Binomial distribution
 - N trials, each with probability of success p, probability of failure q = 1 p

- Probability of X success out of N:
$$\Pr[X] = \binom{N}{X} p^X (1-p)^{N-X} = \binom{N}{X} p^X q^{N-X}$$

• Poisson distribution

- Probability of X arrivals with mean rate of λ : $\Pr[X] = \frac{\lambda^X e^{-\lambda}}{X!}$

• Cauchy distribution

- Density function: $f(x) = \frac{a}{\pi(x^2 + a^2)}$ with a > 0 and defined for $x \in (-\infty, \infty)$

• Gamma distribution

- Density function:
$$f(x) = \frac{x^{\alpha-1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}$$
 with $\alpha, \beta > 0$ and defined for $x > 0$

-
$$\Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t} dt$$
 is the gamma function (for $x > 0$) with $\Gamma(n+1) = n!$ for integral n

• Beta distribution

- Density function:
$$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$$
 with $\alpha,\beta > 0$ and defined for $x \in (0,1)$
- $B(m,n) = \int_0^1 t^{m-1}(1-t)^{n-1} dt = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ is the beta function (for $m, n > 0$)

- Geometric distribution
 - In a Bernoulli trial, the probability that the x-th trial is the first "success"
 - Mass function: $f(x) = p(1-p)^{x-1}$
- Pascal distribution
 - In a Bernoulli trial, the probability that the x-th trial can see the k-th "success"
 - Mass function: $f(x) = \binom{x-1}{k-1}p^k(1-p)^{x-k}$ for $x \ge k$
- Exponential distribution

- Density function: $f(x) = \lambda e^{-\lambda x}$
- Weibull distribution
 - Density function: $f(x) = abx^{b-1}e^{-ax^b}$
- Maxwell distribution
 - Modelling the magnitude of the speed of molecules in Brownian motion
 - Density function: $f(x) = \sqrt{2/\pi} \alpha^{3/2} x^2 e^{-\alpha x^2/2}$

3.2 Approximation of Binomial Distribution

- n Bernoulli trials, each with probability of success p, the total number of success is a r.v. X
 - $X \sim \text{Binomial}(n, p)$
 - $-\mu = np$
 - $-\sigma^2 = np(1-p)$
 - Approximation by normal distribution with $\mu = np$ and $\sigma^2 = np(1-p)$:

$$\Pr[a \le X \le b] = \sum_{k=a}^{b} {n \choose k} p^{k} (1-p)^{n-k}$$
$$\Pr[a \le X \le b] \approx \Pr\left[\frac{a - \frac{1}{2} - np}{\sqrt{np(1-p)}} \le z \le \frac{b + \frac{1}{2} - np}{\sqrt{np(1-p)}}\right]$$
$$= \Pr\left[\frac{a - \frac{1}{2} - \mu}{\sigma} \le z \le \frac{b + \frac{1}{2} - \mu}{\sigma}\right]$$

- In general, using normal distribution to approximate a discrete distribution, we set

$$\Pr[a \le X \le b] = \Pr\left[\frac{a - \frac{1}{2} - \mu}{\sigma} \le z \le \frac{b + \frac{1}{2} - \mu}{\sigma}\right]$$

3.3 Approximation of Poisson Distribution

• In a system with exponential interarrival interval, the mean arrivals per unit time is λ

-
$$X \sim \text{Poisson}(\lambda)$$

- $\mu = \sigma^2 = \lambda$

		Binomial	Poisson	Cauchy	Gamma	Beta	Geometric	Pascal	Exponential
	Mean µ	d_N	У	0	αβ	$\frac{\alpha}{\alpha+\beta}$	1/p	k/p	$1/\lambda$
	Variance σ^2	Npq	У	8	$\alpha\beta^2$	$\frac{\alpha\beta}{(\alpha+B)^2(\alpha+B+1)}$	$\frac{1-p}{n^2}$	$rac{k(1-p)}{p^2}$	$1/\lambda^2$
	Moment coeff of skewness α_3	$\frac{bdN }{d-b}$	$1/\sqrt{\lambda}$	undef			2.	2	
	Moment coeff of kurtosis α_4	$3 + \frac{1 - 6pq}{Npq}$	$3+1/\lambda$	undef					
	Mean deviation							-	
	Moment generating func $M(t)$	$(q + pe^t)^N$	$e^{\lambda(\exp(t)-1)}$	undef	$(1-eta t)^{-lpha}$		$\frac{pe^t}{1-(1-p)e^t}$	$\left(\frac{pe^t}{1-(1-p)e^t}\right)^k$	$\frac{lpha}{lpha-t}$
	Characteristic func $\phi(\omega)$	$(q+pe^{i\omega})^N$	$e^{\lambda(\exp(i\omega)-1)}$	e ^{-at0}	$(1-\betai\omega)^{-lpha}$				
5									
		Student's t	Chi-squared	F	Std Normal	Weibull	Maxwell		
	Mean µ	0	٨	$\frac{v_2}{v_2} - 2$	0	$a^{-1/b} \Gamma \left(1+rac{1}{b} ight)$	$2\sqrt{\frac{2}{\pi \alpha}}$		
	Variance σ^2	v	2v	$\frac{2v_2^2(v_1^2+v_2-2)}{v_1(v_2-4)(v_2-2)^2}$	1	$a^{-2/b}\left[\Gamma\left(1+rac{2}{b} ight)-\Gamma^{2}\left(1+rac{1}{b} ight) ight]$	$\frac{1}{\alpha}\left(3-\frac{8}{\pi}\right)$		
	Moment coeff of skewness α ₃				0				
	Moment coeff of kurtosis α_4				ŝ				
	Mean deviation				$\sigma \sqrt{2/\pi}$				
	Moment generating func $M(t)$		$(1-2t)^{-v/2}$		$\exp(\mu t + \frac{1}{2}\sigma^2 t^2)$				
	Characteristic func $\phi(\omega)$		$(1-2i\omega)^{-v/2}$		$\exp(i\mu\omega-\frac{1}{2}\sigma^2\omega^2)$				

– Approximation by normal distribution with $\mu = \sigma^2 = \lambda$:

$$\Pr[a \le X \le b] = \sum_{k=a}^{b} \frac{\lambda^{k} e^{-\lambda}}{k!}$$

$$\Pr[a \le X \le b] \approx \Pr\left[\frac{a - \frac{1}{2} - \lambda}{\sqrt{\lambda}} \le z \le \frac{b + \frac{1}{2} - \lambda}{\sqrt{\lambda}}\right]$$

$$= \Pr\left[\frac{a - \frac{1}{2} - \mu}{\sigma} \le z \le \frac{b + \frac{1}{2} - \mu}{\sigma}\right]$$

3.4 Central Limit Theorem

- For large sample size $(n \to \infty)$ of a population, the z-score $z = \frac{\bar{x} \mu}{\sigma/\sqrt{n}}$ is close to normal
 - where μ is the population mean and σ is the population standard deviation
- For *n* samples x_i (i = 1,...,n) from a population whose population mean is μ and variance σ^2 , which are both finite, then

$$\lim_{n \to \infty} \Pr\left[a \le \frac{\sum_{i=1}^{n} x_i - n\mu}{\sigma \sqrt{n}} \le b\right] = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-t^2/2} dt$$

4 Sampling Theory

- Sampling distributions of means:
 - Finite population of *N*, from which, taken *n* samples without replacement, then the expected sample mean and sample standard deviation would be

$$ar{x} = \mu_X$$

 $s_X = rac{\sigma}{\sqrt{n}} \sqrt{rac{N-n}{N-1}}$

- If the population size is infinite, then $s_X = \sigma / \sqrt{n}$
- For large samples $(n \ge 30)$, by central limit theorem, the sampling distribution of means is approximately normal, so long as μ and σ are finite with N > 2n
- Sampling distribution of proportions
 - Infinite population, with *n* samples taken from, the probability of "success" in the population is *p* and that of "failure" is q = 1 p
 - * Binomial distribution

- The expected proportion of "success" in the sample and its standard deviation is

$$\bar{p} = \frac{E[x]}{n} = p$$

$$s_P = \frac{E[s_X]}{n} = \frac{\sqrt{npq}}{n} = \sqrt{\frac{pq}{n}} = \sqrt{\frac{p(1-p)}{n}}$$

- Sampling distribution of differences of means
 - Given two independent populations of infinite size, with n_1 samples drawn from the first population and n_2 samples drawn from the second population
 - The populations are having mean and standard deviations μ_1 , σ_1 and μ_2 , σ_2 respectively
 - Mean and standard deviations of the samples are \bar{x}_1 , s_1 and \bar{x}_2 , s_2 respectively
 - For $x = \bar{x}_1 \bar{x}_2$, the expected value of x and its standard deviation are

$$\bar{x} = \mu_1 - \mu_2$$

 $s_x = \sqrt{s_1^2 + s_2^2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

- * Also true for finite populations with samples taken with replcement
- * For finite population with samples taken without replacement, $s_x = \sqrt{s_1^2 + s_2^2} = \sqrt{\frac{\sigma_1^2}{n_1}}\sqrt{\frac{N_1 n_1}{N_1 1}} + \frac{\sigma_2^2}{n_2}\sqrt{\frac{N_2 n_2}{N_2 1}}$
- Sampling distribution of differences of proportions
 - Given two independent populations of infinite size, with n_1 samples drawn from the first population and n_2 samples drawn from the second population
 - Probability of "success" in the populations are p_1 and p_2 respectively
 - The proportion of success in the samples are $\bar{p}_1 = x_1/n_1$ and $\bar{p}_2 = x_2/n_2$ respectively
 - For $p = \bar{p}_1 \bar{p}_2$, the expected value of p and its standard deviation are

$$\bar{p} = p_1 - p_2$$

 $s_p = \sqrt{s_1^2 + s_2^2} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$

- Sampling distribution of sum of statistics
 - Given two samples, 1 and 2, the statistics are x_1 and x_2 with the respective standard deviation s_1 and s_2
 - Sum of statistics: $x_{1+2} = x_1 + x_2$
 - S.D. of statistics: $s_{1+2} = \sqrt{s_1^2 + s_2^2}$
- Standard errors: Standard deviation of a sampling distribution of a statistics is often called the standard error

5 Small Sampling Theory

• Small samples: n < 30

5.1 Student's *t*-distribution

• Student's *t*-distribution:

$$Y(t) = Y_0 \left(1 + \frac{t^2}{n-1}\right)^{-n/2} = Y_0 \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2}$$
$$= \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2}$$

Statistics of sampling distribution	Expectation of estimate	Standard error of estimate	Remarks
Mean	$\bar{x} = \mu$	$s_x = \frac{\sigma}{\sqrt{n}}$	Close to normal when $n \ge 30$
Proportions	x/n = p	$s_p = \sqrt{\frac{p(1-p)}{n}}$	Close to normal when $n \ge 30$
Standard deviations	$s = \sigma$	$s_{\sigma} = \frac{\sigma}{\sqrt{2n}}$	For a normal population. Close to normal when $n \ge 100$
	$s \approx \sigma$	$s_{\sigma} = \sqrt{\frac{\mu_4 - \mu_2^2}{4n\mu_2}}$	For non-normal population. Here, μ_k is the <i>k</i> -th moments about the mean in the population
Medians	median	$s_{\rm med} = \sigma \sqrt{\frac{\pi}{2n}} = \frac{1.2533\sigma}{\sqrt{n}}$	For a normal population. Close to normal when $n \ge 30$
1st or 3rd quartiles	<i>Q</i> 1 or <i>Q</i> 3	$s_{Q1} = s_{Q3} = \frac{1.3626\sigma}{\sqrt{n}}$	For a normal population. Close to normal when $n \ge 30$
Deciles	<i>D</i> 1 or <i>D</i> 9	$s_{D1} = s_{D9} = \frac{1.7094\sigma}{\sqrt{n}}$	For a normal population. Close to normal when $n \ge 30$
	D2 or D8	$s_{D2} = s_{D8} = \frac{1.4288\sigma}{\sqrt{n}}$	
	D3 or D7	$s_{D3} = s_{D7} = \frac{1.31806}{\sqrt{n}}$	
	<i>D</i> 4 or <i>D</i> 6	$s_{D4} = s_{D6} = \frac{1.2680\sigma}{\sqrt{n}}$	
Semi-inter- quartile range	Q = Q3 - Q1	$s_Q = \frac{0.7867\sigma}{\sqrt{n}}$	For a normal population. Close to normal when $n \ge 30$
Variance	$s^2 = \sigma^2$	$s_{\sigma^2} = \sigma \sqrt{\frac{2}{n}}$	For a normal population. Close to normal when $n \ge 100$
	$s^2 = \sigma^2 \frac{n-1}{n}$	$s_{\sigma^2} = \sqrt{\frac{\mu_4 - \frac{n-3}{n-1}\mu_2^2}{n}}$	For a non-normal population.
Coefficient of variation	$s/\bar{x} = \sigma/\mu$	$s_{CV} = \frac{\sigma/\mu}{\sqrt{2n}} \sqrt{1 + 2(\sigma/\mu)^2}$	For a normal population. Close to normal when $n \ge 100$

- v = n - 1 is the number of degrees of freedom

- Y_0 is a normalization constant for making $\int_{-\infty}^{\infty} Y(t) dt = 1$

- As $n \to \infty$, Y(t) tends to standard normal distribution function

- Analogous to $z = \frac{\bar{x} \mu}{\sigma / \sqrt{n}}$, we define $t = \frac{\bar{x} \mu}{s / \sqrt{n}}$ where $s = \frac{1}{n-1} \sum_{i} (x_i - \bar{x})^2$ is the unbiased estimate of the population standard deviation σ
 - For converting statistics \bar{x} to fit into Student's *t*-distribution

5.2 Chi-square Distribution

• Chi-square distribution:

$$Y(\chi^{2}) = Y_{0} \left(\sqrt{\chi^{2}} \right)^{\nu - 2} e^{-\chi^{2}/2} = Y_{0} \chi^{\nu - 2} e^{-\chi^{2}/2}$$
$$= \frac{1}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} \chi^{\nu - 2} e^{-\chi^{2}/2}$$

- where v = n 1 is the number of degrees of freedom
- Y_0 is the normalization constant to make $\int_0^\infty Y(\chi^2) d\chi^2 = \int_{-\infty}^\infty \tilde{Y}(\chi) d\chi = 1$
- Maximum value of $Y(\chi^2)$ attained when $\chi^2 = \nu 2$

• Define
$$\chi^2 = \frac{Ns^2}{\sigma^2} = \frac{\sum_i (x_i - \bar{x})^2}{\sigma^2}$$

5.3 Fisher's *F*-distribution

• *F*-distribution

$$\begin{split} F &= \frac{s_1^2 / \sigma_1^2}{s_2^2 / \sigma_2^2} \\ Y(F) &= Y_0 \frac{F^{(\nu_1/2) - 1}}{(\nu_1 F + \nu_2)^{(\nu_1 + \nu_2)/2}} \\ &= \frac{\Gamma\left(\frac{\nu_1 + \nu_2}{2}\right) \nu_1^{\nu_1/2} \nu_2^{\nu_2/2}}{\Gamma\left(\frac{\nu_1}{2}\right) \Gamma\left(\frac{\nu_2}{2}\right)} \frac{F^{(\nu_1/2) - 1}}{(\nu_1 F + \nu_2)^{(\nu_1 + \nu_2)/2}} \end{split}$$

- s_1 and s_2 are the unbiased estimation of standard deviations
- $v_1 = n_1 1$ and $v_2 = n_2 1$ are the degrees of freedom
- Y_0 is the normalization constant to make $\int_0^\infty Y(F)dF = 1$

6 Correlation

• Pearson correlation factor:

$$r = \frac{E[XY] - E[X]E[Y]}{\sqrt{E[X^2] - E[X]^2}\sqrt{E[Y^2] - E[Y]^2}} = \frac{\sum xy - \frac{1}{n}\sum x\sum y}{\sqrt{\left[\sum x^2 - \frac{1}{n}(\sum x)^2\right]\left[\sum y^2 - \frac{1}{n}(\sum y)^2\right]}}$$

- *n* samples taken from a population
- r describes the correlation between statistic X and statistic Y of the sample
- $-1 \le r \le 1$
 - * r = 0: statistics X and Y are independent
 - * $r \approx 0$: statistics X and Y do not have much correlation
 - * $r \approx 1$: X and Y usually happen together
 - * $r \approx -1$: *X* and *Y* usually contradicts
- Pearson correlation factor is suitable for linear relationships
 - Bimodal relation would give wrong conclusion

7 Confidence

- By CLT, everything can be converted to standard normal distribution
- In standard normal distribution, z lies in certain interval with some probability (for 30 samples or more)
 - If number of samples are small, or for higher accuracy (which depends on the number of samples), Student's *t* distribution should be used instead of standard normal distribution

Example: Mean

- Sampling $n \ge 30$ items from an infinite population
- Mean value of a property (e.g. weight) is \bar{x} and the (sample) variance is s_X
- We say that,

the mean value of the property (e.g. weight) of the population is $\bar{x} \pm z_{\alpha/2} \frac{s_x}{\sqrt{n}}$ with probability $1 - \alpha$, where $z_{\alpha/2}$

satisfies
$$\frac{1}{\sqrt{2\pi}} \int_{-z_{\alpha/2}}^{z_{\alpha/2}} e^{-t^2/2} dt = 1 - \alpha$$

- $z_{\alpha/2}$ is called the critical value
- for smaller number of samples, $t_{\alpha/2}$ should be used instead of $z_{\alpha/2}$, and take n-1 degrees of freedom

Example: Bernoulli Trial

- For $n \ge 30$ trials, with success count of x
- Sample proportion of success is p = x/n, and the standard error is $SE = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{x/n(1-x/n)}{n}}$
- We say that,

the success probability in the population is $p \pm z_{\alpha/2}(SE) = \frac{x}{n} \pm z_{\alpha/2} \sqrt{\frac{x/n(1-x/n)}{n}}$ with probability $1 - \alpha$

- 1α is called the *confidence level*
- $p \pm z_{\alpha/2}$ (SE) is called the *confidence interval*

Example: Determining required sample size

- In a Bernoulli trial, sample for the rate of success
- Required accuracy: error to be within $\pm E$
- For a sample size of *n*, the number of success is *x*, then $SE = \sqrt{\frac{x/n(1-x/n)}{n}}$ and the magnitude of error is $t_{\alpha/2}\sqrt{\frac{x/n(1-x/n)}{n}} \le E$

$$(t_{\alpha/2})^2 \frac{x/n(1-x/n)}{n} \le E^2$$
$$\frac{1}{n} \le \frac{E^2}{(t_{\alpha/2})^2 p(1)}$$
$$n \ge \frac{(t_{\alpha/2})^2 p(1)}{E^2}$$

where p = x/n is the raw measured success rate

8 Hypothesis Testing

• Given observation and hypothesis, test if the observation is a particular case of the hypothesis with certain probability

8.1 Procedure of hypothesis testing

- 1. Set up hypothesis
 - H_0 : Null hypothesis, which usually represent the case that nothing special has been happended. Example: no effect on additional measure, no change ever happend
 - H_1 : Alternative hypothesis, which represents the null hypothesis is false
 - H_2 : Yet another alternative hypothesis (optional). If exists, H_1 and H_2 usually represents cases at the two "tails" respectively
- 2. Measurement, by survey or experiment to collect statistics
- 3. Verify the result of measurement, to see whether the probability that the occurance of the measurement result is acceptable within the hypothesis

Example: Is Diet Coke carcinogenic?

- According to survey, probability of having cancer by a normal people is μ
- Set:
 - H_0 : Diet coke is not carcinogenic
 - H_1 : Diet coke is carcinogenic
 - *H*₂: Diet coke is cancer-preventing (optional)
- Observing a group of *n* diet coke fans for a long time, and found that *x* of them turns out to have cancer

- Then the sample mean of cancer rate is p = x/n and the standard error is $s_p = \sqrt{\frac{p(1-p)}{n}}$
- Assume that our predefined confidence level is 1α , so we can find $z_{\alpha/n}$ (assume $n \ge 30$)
- Conclusion:

- If
$$z = \frac{p - \mu}{s_p} < z_{\alpha/2}$$
, (or if H_2 defined, $|z| < z_{\alpha/2}$) then accept H_0
- If $z = \frac{p - \mu}{s_p} \ge z_{\alpha/2}$, then accept H_1
- (optional) If $z = \frac{p - \mu}{s_p} \le -z_{\alpha/2}$, then accept H_2

Example: Are boys and girls having same weight?

- For a group of boys and a group of girls, which of size n_1 and n_2 respectively
- Mean weight and variance measured are x_1 , σ_1^2 and x_2 , σ_2^2 respectively
- Set:
 - H_0 : Same weight, i.e. $x_1 x_2 = 0$
 - H_1 : not the same, i.e. $x_1 x_2 \neq 0$
- Variable interested: $x_1 x_2$
- Standard error: SE = $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
 - Pooled variance estimate: $\sigma_p^2 = \frac{(n_1 1)s_1^2 + (n_2 1)s_2^2}{(n_1 1) + (n_2 1)}$

- Alternative way of writing standard error: $SE = \sqrt{\sigma_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$

• Define:
$$z = \frac{(x_1 - x_2) - 0}{\text{SE}} = \frac{x_1 - x_2}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$

- Conclusion:
 - If $|z| < z_{\alpha/2}$, then accept H_0
 - If $|z| \ge z_{\alpha/2}$, then accept H_1

Example: How effective are the two drugs

- For two group of patients, which of size n_1 and n_2 , and prescribed with drugs 1 and 2 respectively
- Number of patients cured in each group: x_1 and x_2 ,
- Set:

- H_0 : Two drugs are of same probability of effect, i.e. $p_1 - p_2 = \frac{x_1}{n_1} - \frac{x_2}{n_2} = 0$

- H_1 : Not the same

• Standard error:
$$SE = \sqrt{(SE_1)^2 + (SE_2)^2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

• Define:
$$z = \frac{p_1 - p_2}{SE}$$

- Conclusion:
 - If $|z| < z_{\alpha/2}$, then accept H_0
 - If $|z| \ge z_{\alpha/2}$, then accept H_1
 - * If $z \ge z_{\alpha/2}$, then drug 1 is more effective
 - * If $-z \le z_{\alpha/2}$, then drug 2 is more effective

Example: Hypothesis testing with small samples

- Generally the same procedure
- Instead of $z_{\alpha/2}$, take $t_{\alpha/2}$
 - Use Student's t distribution instead of standard normal distribution
 - Degree of freedom: n-1 for testing with single group of samples (one sample mean, \bar{x} , is used in the analysis)
 - Degree of freedom: $n_1 + n_2 2$ for testing two two groups of samples (two sample means, \bar{x}_1 and \bar{x}_2 , are used in the analysis)

8.2 Decision theory

- Confidence level: 1α
- Power of test: 1β
- Type I error: Accepting H_1 when H_0 is true
 - Probability of type I error: α
- Type II error: Accepting H_0 when H_1 is true
 - Probability of type II error: β

Example: Error in digital communication

- Voltage transmitted: v_L volt for signal L and v_H volt for signal H, $v_L < v_H$
- White noise: $N(0, \sigma^2)$
- Received signal is decoded as signal L if the voltage received is v < V

- If v > V, decoded as signal H

- Type 1 error: Erroneosly decoded signal L as H (one-tail)
 - Probability = α , where $z_{\alpha} = (V v_L)/\sigma^2$
- Type 2 error: Erroreously decoded signal H as L (one-tail)
 - Probability = β , where $z_{\beta} = (v_H V)/\sigma^2$
- Reducing Type 1 error: increase V
- Reducing Type 2 error: decrease V

9 Comparing Distribution

• Use Chi-square distribution

9.1 Goodness-of-fit test

• To determine whether the observed distribution model fits an expected model

• Define chi-square as:
$$\chi^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$

- k: number of category
- O_i : Observed frequency of category i
- E_i : Expected frequency of category i
- Compare using χ^2 distribution with k-1 degrees of freedom: the observation agrees with the expectation if $\chi^2 < \chi^2_{\alpha/2}$ for confidence level of $1-\alpha$

Example: Verifying a dice is unbiased

- Throwing a dice for *n* times, and record the number of times that different faces showed up
 - Let O_k be the number of times that face k showed up (k = 1, ..., 6)
- If it is a fair dice, the frequency for face k should be $E_k = n/6$

• Compute
$$\chi^2 = \sum_{k=1}^{6} \frac{(O_k - E_k)^2}{E_k} = \sum_{i=1}^{6} \frac{(O_k - n/6)^2}{n/6}$$

- The critical value $\chi^2_{\alpha/2}$ should be found, with confidence level 1α and 6 1 = 5 degrees of freedom
- It is a fair dice if $\chi^2 < \chi^2_{\alpha/2}$

9.2 Independence test

- To determine whether different sets of samples are of the same distribution
- Observe r_k samples in set k
 - The frequency observed for category j in sample set k is O_{kj}
 - The sum of all frequencies in all the sample sets in category j is c_i
 - Total number of observations: $N = \sum_k r_k = \sum_j c_j$
 - If the sample sets are of the same distribution, then we expect the frequency of category j in sample set k to be $E_{kj} = \frac{r_k c_j}{N}$

• Define chi-square as:
$$\chi^2 = \sum_k \sum_j \frac{(O_{kj} - E_{kj})^2}{E_{kj}}$$

- Degrees of freedom: (r-1)(c-1)where *r* is the number of sample sets and *c* is the number of categories
- The different sample sets are in the same distribution if $\chi^2 < \chi^2_{\alpha/2}$ for confidence level of 1α

Example: Grading Standard in Courses

- To see whether different courses have the same standard in grading
- For the k courses, there are j grades awarded, and the number of students enrolled in course k is r_k
- Tabularize the number of students awarded to different grades in different courses:

	Grade 1	Grade 2	•••	Grade j	Total enrollment
Course 1	<i>O</i> ₁₁	<i>O</i> ₁₂		O_{1j}	$r_1 = \sum_j O_{1j}$
Course 2	<i>O</i> ₂₁	<i>O</i> ₂₂		O_{2j}	$r_2 = \sum_j O_{2j}$
÷	:	:		÷	:
Course k	O_{k1}	O_{k2}		O_{kj}	$r_k = \sum_j O_{kj}$
Total awardees	$c_1 = \sum_k O_{k1}$	$c_2 = \sum_k O_{k2}$		$c_j = \sum_k O_{kj}$	$N = \sum_k \sum_j O_{kj}$

• Find
$$\chi^2 = \sum_k \sum_j \frac{(O_{kj} - E_{kj})^2}{E_{kj}}$$
 with $E_{kj} = \frac{r_k c_j}{N}$

• If $\chi^2 < \chi^2_{\alpha/2}$ for confidence level of $1 - \alpha$ and (k-1)(j-1) degrees of freedom, then the courses are having the same grading standard, otherwise, there are some courses have biases.

10 ANOVA: Analysis of Variance

- Compare whether the means of two populations are equal: Two-way t-test (i.e. testing the difference of mean)
- Compare whether the means of several populations are equal: ANOVA
- Data:
 - k: Number of population
 - n_i : Sample size of population *i*
 - \bar{x}_i : Sample mean of population *i*
 - s_i^2 : Sample variance of population *i*
 - μ_i : Population mean of population *i*
 - σ_i^2 : Population variance of population *i*
 - $n = \sum_{i} n_i$: Total sample size
 - \bar{x} : Overall sample mean of the *n* samples
 - T_i : Sum of the n_i samples from population i
 - $v_1 = k 1$: Degrees of freedom for treatments
 - $v_2 = n k$: Degrees of freedom for error
 - n-1: Degrees of freedom for total
- Data to compute:

- Treatment sum of squares: SSTR =
$$\sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x})^2 = \left(\sum_{i=1}^{k} \frac{T_i^2}{n_i}\right) - \frac{(\sum x)^2}{n}$$

- Between treatments mean square: $MSTR = \frac{SSTR}{k-1}$

- Error sum of squares: SSE =
$$\sum_{i=1}^{k} (n_i - 1)s_i^2 = \sum_{i=1}^{k} \sum (x - \bar{x}_i)^2$$

- Error mean square: MSE = $\frac{SSE}{n-k}$

- Total sum of squares: SST = SSTR + SSE =
$$\sum (x - \bar{x})^2 = \sum x^2 - \frac{(\sum x)^2}{n}$$

- *F* ratio: $F = \frac{\text{MSTR}}{\text{MSE}} = \frac{\text{SSTR}/(k-1)}{\text{SSE}/(n-k)}$
 - $v_1 = k 1$ is the degrees of freedom for the numerator
 - $v_2 = n k$ is the degrees of freedom for denominator
 - *F*-distribution: $F(v_1, v_2)$
 - * Mean of *F*-distribution: $\mu = \frac{v_2}{v_2 2}$
 - * Let $F_{\alpha}(v_1, v_2)$ to be the critical value where α is the area at right hand tail, then we have $F_{1-\alpha}(v_1, v_2) = \frac{1}{F_{\alpha}(v_2, v_1)}$
- If the means of the k populations are equal, then we would have $F < F_{\alpha}(v_1, v_2)$ with confidence 1α

11 Regression

11.1 Linear regression

- For every sample, we can obtain two properties X and Y, which we denote as (x_i, y_i) for sample i
- Sample size: n
- Whether X and Y are correlated? That is, if providing x_i , can we obtain projected y?

- Usually, assume *X* and *Y* satisfy the linear relation: Y = a + bX
- Then for known value $X = x_i$, compute the projected value $Y = \hat{y_i}$
- Sample mean:

- Sample mean of X:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Sample mean of Y: $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

• Regression formula: For Y = a + bX,

$$- b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
$$- a = \bar{y} - b\bar{x}$$
$$- \text{ We can compute } \hat{y}_i = a + bx_i$$

11.2 Correlation coefficient

• Sum of square error of regression: $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ which measures the difference between the experimental value and projected value of *Y*

• Spread of X:
$$SS_{xx} = \sum_{i=1}^{n} (x_i - \bar{x}_i)^2$$

• Spread of Y:
$$SS_{yy} = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2$$

• Correlation of X and Y:
$$SS_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- Sum of square of regression variability: $SSR = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$
- Then we have:
 - $SS_{yy} = SSE + SSR$

- Proportion of error due to error spread =
$$\frac{SSE}{SS_{yy}}$$

- Squared correlation: $R^2 = \frac{SSR}{SS_{yy}} = 1 \frac{SSE}{SS_{yy}} \le 1$
- Correlation coefficient: $r = \operatorname{sign}(b)\sqrt{R^2}$
 - If $R^2 = 1$, then regression equation and experimental data fits exactly
- Pearson coefficient, a.k.a. product moment correlation coefficient: $r_{xy} = \frac{SS_{xy}}{\sqrt{SS_{xx} \cdot SS_{yy}}}$
 - Same property as r