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1 Terminologies
• Descriptive statistics: Statistics that using pictures, etc to present data

• Inferential statistics: Statistics that conclude something form the data

• Measurements:

– Ratio: Measurement with zero
– Interval: Measurement without zero
– Ordinal: Ordering
– Nominal: Category identification

• Population: Everything in your interest

• Sample: The items that you examined/measured

• Sample size (n): The size of the sample

• Data (xi): The information (value) obtained from sample

• Random variables (X): The name of the information

• r-th moment of X : xr = E[X r] =
1
n

n∑

i=1

xr
i

– a.k.a. r-th moment about zero

• r-th central moment of X : mr = E[(X − x̄)r] =
1
n

n∑

i=1

(xi− x̄)r

– a.k.a. r-th moment about the mean x̄
– Dimensionless moment: αr = mr/

√
mr

2

• Skewness

– Pearson’s first coefficients of skewness: Skewness =
mean−mode

standard deviation

– Pearson’s second coefficients of skewness: Skewness =
3(mean−median)
standard deviation

– Skewness is positive if the distribution is skewed to the right, i.e. having a longer tail to the right than to the
left
∗ known as right-skewed
∗ the converse: left-skewed, with negative skewness

– Moment coefficient of skewness: α3 = m3/
√

m3
2

• Kurtosis:

– The degree of peakedness of a distribution, relative to normal distribution
– leptokurtic: having a relatively high peak
– platykurtic: flat-topped
– mesokurtic: just like normal distribution, nor very peaked or very flat-topped
– Moment coefficient of kurtosis: α4 = m4/m2

2
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Sample vs Population

• Sample mean (x̄): Mean obtained from samples, a known fact after survey. x̄ =
1
n

n∑

i=1

xi

• Population mean (µX ): Mean obtained from examination of the population, usually unknown but interested to know.

• Population variance: σ2
X =

1
N

N∑

i=1

(xi−µX )2

– Of finite population N
– Also known as the second central moment of X

• Sample variance: s2
X =

1
n−1

n∑

i=1

(xi− x̄)2

– As an estimate of true population variance σ2
X

– Also known as the unbiased estimator and
1
n

n∑

i=1

(xi− x̄)2 is called the biased estimator

∗ As X̄ is used as the mean instead of µ , the biased estimator is underestimating the true variance because
there are raw counts of repeated elements

∗ Proof of “unbiased”: E[s2
X ] = E[(x−µX )2]

Sample Population

Size n N

Mean x̄ = 1
n
∑

x µ = 1
N

∑
x

Variance s2 = 1
n−1

∑
(x− x̄)2 σ2 = 1

N
∑

(x−µ)2

Standard Deviation s =
√

s2 σ =
√

σ2

Coefficient of Variation CV = s/x̄ CV = µ/σ

z-Score z = (x− x̄)/s z = (x−µ)/σ

2 Identities

var[X ] = E[(X−µX )2]
cov(X ,Y ) = E[(X−µX )(Y −µY )] = E[XY ]−µX µY

var[aX +b] = a2var[X ]

var[aX +bY ] = a2var[X ]+b2var[Y ]+2abcov(X ,Y )
E[aX +bY ] = aE[X ]+bE[Y ]

3 Normal Distribution

• Standard normal distribution: f (z) =
1√
2π

e−z2/2

– µ = 0, σ = 1
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• Commulative distribution of standard normal: F(t) = Pr[z≤ t] =
∫ t

−∞
f (z)dz

– One-tail: P(t) =
∫ t

−∞
f (z)dz = 1− 1

2
erfc

( t√
2

)

– Two-tail: Q(t) =
∫ t

−t
f (z)dz = erf

( t√
2

)

– erf(x) = 1− erfc(x) =
2√
π

∫ x

0
e−t2

dt

• General normal distribution: N(x; µ,σ) =
1√

2πσ 2
e
−

(x−µ)2

2σ2

– Converting general normal distribution to standard normal distribution: z =
x−µ

σ

– There are two points of inflexion:
d2

dx2 N(x; µ ,σ) = 0 at x = µ±σ

3.1 Facts of Standard Distributions
• Binomial distribution

– N trials, each with probability of success p, probability of failure q = 1− p

– Probability of X success out of N: Pr[X ] =
(

N
X

)
pX (1− p)N−X =

(
N
X

)
pX qN−X

• Poisson distribution

– Probability of X arrivals with mean rate of λ : Pr[X ] =
λ X e−λ

X!

• Cauchy distribution

– Density function: f (x) =
a

π(x2 +a2)
with a > 0 and defined for x ∈ (−∞,∞)

• Gamma distribution

– Density function: f (x) =
xα−1e−x/β

β α Γ(α)
with α,β > 0 and defined for x > 0

– Γ(x) =
∫ ∞

0
tx−1e−tdt is the gamma function (for x > 0) with Γ(n+1) = n! for integral n

• Beta distribution

– Density function: f (x) =
xα−1(1− x)β−1

B(α,β )
with α,β > 0 and defined for x ∈ (0,1)

– B(m,n) =
∫ 1

0
tm−1(1− t)n−1dt =

Γ(m)Γ(n)
Γ(m+n)

is the beta function (for m,n > 0)

• Geometric distribution

– In a Bernoulli trial, the probability that the x-th trial is the first “success”

– Mass function: f (x) = p(1− p)x−1

• Pascal distribution

– In a Bernoulli trial, the probability that the x-th trial can see the k-th “success”

– Mass function: f (x) =
(x−1

k−1

)
pk(1− p)x−k for x≥ k

• Exponential distribution
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– Density function: f (x) = λe−λx

• Weibull distribution

– Density function: f (x) = abxb−1e−axb

• Maxwell distribution

– Modelling the magnitude of the speed of molecules in Brownian motion

– Density function: f (x) =
√

2/πα3/2x2e−αx2/2

3.2 Approximation of Binomial Distribution
• n Bernoulli trials, each with probability of success p, the total number of success is a r.v. X

– X ∼ Binomial(n, p)

– µ = np

– σ2 = np(1− p)

– Approximation by normal distribution with µ = np and σ2 = np(1− p):

Pr[a≤ X ≤ b] =
b∑

k=a

(
n
k

)
pk(1− p)n−k

Pr[a≤ X ≤ b]≈ Pr

[
a− 1

2 −np√
np(1− p)

≤ z≤ b+ 1
2 −np√

np(1− p)

]

= Pr

[
a− 1

2 −µ
σ

≤ z≤ b+ 1
2 −µ
σ

]

– In general, using normal distribution to approximate a discrete distribution, we set

Pr[a≤ X ≤ b] = Pr

[
a− 1

2 −µ
σ

≤ z≤ b+ 1
2 −µ
σ

]

ba

a-1/2 b+1/2

3.3 Approximation of Poisson Distribution
• In a system with exponential interarrival interval, the mean arrivals per unit time is λ

– X ∼ Poisson(λ )

– µ = σ2 = λ
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– Approximation by normal distribution with µ = σ2 = λ :

Pr[a≤ X ≤ b] =
b∑

k=a

λ ke−λ

k!

Pr[a≤ X ≤ b]≈ Pr

[
a− 1

2 −λ√
λ

≤ z≤ b+ 1
2 −λ√
λ

]

= Pr

[
a− 1

2 −µ
σ

≤ z≤ b+ 1
2 −µ
σ

]

ba

a-1/2 b+1/2

3.4 Central Limit Theorem

• For large sample size (n→ ∞) of a population, the z-score z =
x̄−µ
σ/
√

n
is close to normal

– where µ is the population mean and σ is the population standard deviation

• For n samples xi (i = 1, . . . ,n) from a population whose population mean is µ and variance σ2, which are both
finite, then

lim
n→∞

Pr

[
a≤

n∑
i=1

xi−nµ

σ
√

n
≤ b

]
=

1√
2π

∫ b

a
e−t2/2dt

4 Sampling Theory
• Sampling distributions of means:

– Finite population of N, from which, taken n samples without replacement, then the expected sample mean and
sample standard deviation would be

x̄ = µX

sX =
σ√

n

√
N−n
N−1

– If the population size is infinite, then sX = σ/
√

n

– For large samples (n ≥ 30), by central limit theorem, the sampling distribution of means is approximately
normal, so long as µ and σ are finite with N > 2n

• Sampling distribution of proportions

– Infinite population, with n samples taken from, the probability of “success” in the population is p and that of
“failure” is q = 1− p

∗ Binomial distribution
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– The expected proportion of “success” in the sample and its standard deviation is

p̄ =
E[x]

n
= p

sP =
E[sX ]

n
=
√

npq
n

=
√

pq
n

=

√
p(1− p)

n

• Sampling distribution of differences of means

– Given two independent populations of infinite size, with n1 samples drawn from the first population and n2
samples drawn from the second population

– The populations are having mean and standard deviations µ1, σ1 and µ2, σ2 respectively

– Mean and standard deviations of the samples are x̄1, s1 and x̄2, s2 respectively

– For x = x̄1− x̄2, the expected value of x and its standard deviation are

x̄ = µ1−µ2

sx =
√

s2
1 + s2

2 =

√
σ2

1
n1

+
σ2

2
n2

∗ Also true for finite populations with samples taken with replcement

∗ For finite population with samples taken without replacement, sx =
√

s2
1 + s2

2 =

√
σ2

1
n1

√
N1−n1

N1−1
+

σ2
2

n2

√
N2−n2

N2−1

• Sampling distribution of differences of proportions

– Given two independent populations of infinite size, with n1 samples drawn from the first population and n2
samples drawn from the second population

– Probability of “success” in the populations are p1 and p2 respectively

– The proportion of success in the samples are p̄1 = x1/n1 and p̄2 = x2/n2 respectively

– For p = p̄1− p̄2, the expected value of p and its standard deviation are

p̄ = p1− p2

sp =
√

s2
1 + s2

2 =

√
p1(1− p1)

n1
+

p2(1− p2)
n2

• Sampling distribution of sum of statistics

– Given two samples, 1 and 2, the statistics are x1 and x2 with the respective standard deviation s1 and s2

– Sum of statistics: x1+2 = x1 + x2

– S.D. of statistics: s1+2 =
√

s2
1 + s2

2

• Standard errors: Standard deviation of a sampling distribution of a statistics is often called the standard error

5 Small Sampling Theory
• Small samples: n < 30

5.1 Student’s t-distribution
• Student’s t-distribution:

Y (t) = Y0

(
1+

t2

n−1

)−n/2

= Y0

(
1+

t2

ν

)−(ν+1)/2

=
Γ

( ν+1
2

)
√

νπΓ
( ν

2

)
(

1+
t2

ν

)−(ν+1)/2
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Statistics of
sampling

distribution

Expectation of
estimate Standard error of estimate Remarks

Mean x̄ = µ sx =
σ√

n Close to normal when n≥ 30

Proportions x/n = p sp =

√
p(1− p)

n
Close to normal when n≥ 30

Standard
deviations s = σ sσ =

σ√
2n

For a normal population. Close to normal when
n≥ 100

s≈ σ sσ =

√
µ4−µ2

2
4nµ2

For non-normal population. Here, µk is the k-th
moments about the mean in the population

Medians median smed = σ
√

π
2n

=
1.2533σ√

n
For a normal population. Close to normal when
n≥ 30

1st or 3rd
quartiles Q1 or Q3 sQ1 = sQ3 =

1.3626σ√
n

For a normal population. Close to normal when
n≥ 30

Deciles D1 or D9 sD1 = sD9 =
1.7094σ√

n
For a normal population. Close to normal when
n≥ 30

D2 or D8 sD2 = sD8 =
1.4288σ√

n

D3 or D7 sD3 = sD7 =
1.3180σ√

n

D4 or D6 sD4 = sD6 =
1.2680σ√

n

Semi-inter-
quartile

range
Q = Q3−Q1 sQ =

0.7867σ√
n

For a normal population. Close to normal when
n≥ 30

Variance s2 = σ2 sσ2 = σ
√

2
n

For a normal population. Close to normal when
n≥ 100

s2 = σ2 n−1
n sσ2 =

√
µ4− n−3

n−1 µ2
2

n
For a non-normal population.

Coefficient
of variation s/x̄ = σ/µ sCV =

σ/µ√
2n

√
1+2(σ/µ)2 For a normal population. Close to normal when

n≥ 100

– ν = n−1 is the number of degrees of freedom
– Y0 is a normalization constant for making

∫ ∞
−∞ Y (t)dt = 1

– As n→ ∞, Y (t) tends to standard normal distribution function

 0
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• Analogous to z =
x̄−µ
σ/
√

n
, we define t =

x̄−µ
s/
√

n
where s = 1

n−1
∑

i(xi− x̄)2 is the unbiased estimate of the population standard deviation σ

– For converting statistics x̄ to fit into Student’s t-distribution
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5.2 Chi-square Distribution
• Chi-square distribution:

Y (χ2) = Y0
(√

χ2
)ν−2e−χ2/2 = Y0χν−2e−χ2/2

=
1

2ν/2Γ
( ν

2

)χν−2e−χ2/2

– where ν = n−1 is the number of degrees of freedom

– Y0 is the normalization constant to make
∫ ∞

0 Y (χ2)dχ2 =
∫ ∞
−∞ Ỹ (χ)dχ = 1

– Maximum value of Y (χ2) attained when χ2 = ν−2

 0
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ν=5

ν=10

ν=20

ν=30

χ2

• Define χ2 =
Ns2

σ 2 =
∑

i(xi− x̄)2

σ2

5.3 Fisher’s F-distribution
• F-distribution

F =
s2

1/σ2
1

s2
2/σ2

2

Y (F) = Y0
F(ν1/2)−1

(ν1F +ν2)(ν1+ν2)/2

=
Γ

( ν1+ν2
2

)
νν1/2

1 νν2/2
2

Γ
( ν1

2

)
Γ

( ν2
2

) F(ν1/2)−1

(ν1F +ν2)(ν1+ν2)/2

– s1 and s2 are the unbiased estimation of standard deviations

– ν1 = n1−1 and ν2 = n2−1 are the degrees of freedom

– Y0 is the normalization constant to make
∫ ∞

0 Y (F)dF = 1
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6 Correlation
• Pearson correlation factor:

r =
E[XY ]−E[X ]E[Y ]√

E[X2]−E[X ]2
√

E[Y 2]−E[Y ]2
=

∑
xy− 1

n
∑

x
∑

y√[∑
x2− 1

n

(∑
x
)2

][∑
y2− 1

n

(∑
y
)2

]

– n samples taken from a population

– r describes the correlation between statistic X and statistic Y of the sample

– −1≤ r ≤ 1

∗ r = 0: statistics X and Y are independent
∗ r ≈ 0: statistics X and Y do not have much correlation
∗ r ≈ 1: X and Y usually happen together
∗ r ≈−1: X and Y usually contradicts

• Pearson correlation factor is suitable for linear relationships

– Bimodal relation would give wrong conclusion

7 Confidence
• By CLT, everything can be converted to standard normal distribution

• In standard normal distribution, z lies in certain interval with some probability (for 30 samples or more)

– If number of samples are small, or for higher accuracy (which depends on the number of samples), Student’s
t distribution should be used instead of standard normal distribution

Example: Mean

• Sampling n≥ 30 items from an infinite population

• Mean value of a property (e.g. weight) is x̄ and the (sample) variance is sX

• We say that,
the mean value of the property (e.g. weight) of the population is x̄± zα/2

sX√
n

with probability 1−α , where zα/2

satisfies
1√
2π

∫ zα/2

−zα/2

e−t2/2dt = 1−α

– zα/2 is called the critical value

– for smaller number of samples, tα/2 should be used instead of zα/2, and take n−1 degrees of freedom

Example: Bernoulli Trial

• For n≥ 30 trials, with success count of x

• Sample proportion of success is p = x/n, and the standard error is SE =

√
p(1− p)

n
=

√
x/n(1− x/n)

n

• We say that,

the success probability in the population is p± zα/2(SE) =
x
n
± zα/2

√
x/n(1− x/n)

n
with probability 1−α

– 1−α is called the confidence level

– p± zα/2(SE) is called the confidence interval
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Example: Determining required sample size

• In a Bernoulli trial, sample for the rate of success

• Required accuracy: error to be within ±E

• For a sample size of n, the number of success is x, then SE =

√
x/n(1− x/n)

n
and the magnitude of error is

tα/2

√
x/n(1− x/n)

n
≤ E

(tα/2)
2 x/n(1− x/n)

n
≤ E2

1
n
≤ E2

(tα/2)2 p(1− p)

n≥ (tα/2)2 p(1− p)
E2

where p = x/n is the raw measured success rate

8 Hypothesis Testing
• Given observation and hypothesis, test if the observation is a particular case of the hypothesis with certain proba-

bility

8.1 Procedure of hypothesis testing
1. Set up hypothesis

• H0: Null hypothesis, which usually represent the case that nothing special has been happended. Example: no
effect on additional measure, no change ever happend

• H1: Alternative hypothesis, which represents the null hypothesis is false

• H2: Yet another alternative hypothesis (optional). If exists, H1 and H2 usually represents cases at the two
“tails” respectively

2. Measurement, by survey or experiment to collect statistics

3. Verify the result of measurement, to see whether the probability that the occurance of the measurement result is
acceptable within the hypothesis

zα/20-zα/2

H0H1 H2

Example: Is Diet Coke carcinogenic?

• According to survey, probability of having cancer by a normal people is µ

• Set:

– H0: Diet coke is not carcinogenic

– H1: Diet coke is carcinogenic

– H2: Diet coke is cancer-preventing (optional)

• Observing a group of n diet coke fans for a long time, and found that x of them turns out to have cancer
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• Then the sample mean of cancer rate is p = x/n and the standard error is sp =

√
p(1− p)

n

• Assume that our predefined confidence level is 1−α , so we can find zα/n (assume n≥ 30)

• Conclusion:

– If z =
p−µ

sp
< zα/2, (or if H2 defined, |z|< zα/2) then accept H0

– If z =
p−µ

sp
≥ zα/2, then accept H1

– (optional) If z =
p−µ

sp
≤−zα/2, then accept H2

Example: Are boys and girls having same weight?

• For a group of boys and a group of girls, which of size n1 and n2 respectively

• Mean weight and variance measured are x1, σ 2
1 and x2, σ2

2 respectively

• Set:

– H0: Same weight, i.e. x1− x2 = 0
– H1: not the same, i.e. x1− x2 6= 0

• Variable interested: x1− x2

• Standard error: SE =

√
σ2

1
n1

+
σ2

2
n2

– Pooled variance estimate: σ2
p =

(n1−1)s2
1 +(n2−1)s2

2
(n1−1)+(n2−1)

– Alternative way of writing standard error: SE =

√
σ2

p

(
1
n1

+
1
n2

)

• Define: z =
(x1− x2)−0

SE
=

x1− x2√
σ2

1 /n1 +σ2
2 /n2

• Conclusion:

– If |z|< zα/2, then accept H0

– If |z| ≥ zα/2, then accept H1

Example: How effective are the two drugs

• For two group of patients, which of size n1 and n2, and prescribed with drugs 1 and 2 respectively

• Number of patients cured in each group: x1 and x2,

• Set:

– H0: Two drugs are of same probability of effect, i.e. p1− p2 =
x1

n1
− x2

n2
= 0

– H1: Not the same

• Standard error: SE =
√

(SE1)2 +(SE2)2 =
√

p1(1− p1)
n1

+
p2(1− p2)

n2

• Define: z =
p1− p2

SE
• Conclusion:

– If |z|< zα/2, then accept H0

– If |z| ≥ zα/2, then accept H1

∗ If z≥ zα/2, then drug 1 is more effective
∗ If −z≤ zα/2, then drug 2 is more effective
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Example: Hypothesis testing with small samples

• Generally the same procedure

• Instead of zα/2, take tα/2

– Use Student’s t distribution instead of standard normal distribution

– Degree of freedom: n−1 for testing with single group of samples (one sample mean, x̄, is used in the analysis)

– Degree of freedom: n1 +n2−2 for testing two two groups of samples (two sample means, x̄1 and x̄2, are used
in the analysis)

8.2 Decision theory
• Confidence level: 1−α

• Power of test: 1−β

• Type I error: Accepting H1 when H0 is true

– Probability of type I error: α

• Type II error: Accepting H0 when H1 is true

– Probability of type II error: β

Example: Error in digital communication

• Voltage transmitted: vL volt for signal L and vH volt for signal H, vL < vH

• White noise: N(0,σ2)

• Received signal is decoded as signal L if the voltage received is v < V

– If v > V , decoded as signal H

• Type 1 error: Erroneosly decoded signal L as H (one-tail)

– Probability = α , where zα = (V − vL)/σ2

• Type 2 error: Erroreously decoded signal H as L (one-tail)

– Probability = β , where zβ = (vH −V )/σ2

• Reducing Type 1 error: increase V

• Reducing Type 2 error: decrease V

9 Comparing Distribution
• Use Chi-square distribution

9.1 Goodness-of-fit test
• To determine whether the observed distribution model fits an expected model

• Define chi-square as: χ2 =
k∑

i=1

(Oi−Ei)2

Ei

– k: number of category

– Oi: Observed frequency of category i

– Ei: Expected frequency of category i

• Compare using χ2 distribution with k−1 degrees of freedom: the observation agrees with the expectation if χ2 <
χ2

α/2 for confidence level of 1−α
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Example: Verifying a dice is unbiased

• Throwing a dice for n times, and record the number of times that different faces showed up

– Let Ok be the number of times that face k showed up (k = 1, . . . ,6)

• If it is a fair dice, the frequency for face k should be Ek = n/6

• Compute χ2 =
6∑

k=1

(Ok−Ek)2

Ek
=

6∑

i=1

(Ok−n/6)2

n/6

• The critical value χ2
α/2 should be found, with confidence level 1−α and 6−1 = 5 degrees of freedom

• It is a fair dice if χ2 < χ2
α/2

9.2 Independence test
• To determine whether different sets of samples are of the same distribution

• Observe rk samples in set k

– The frequency observed for category j in sample set k is Ok j

– The sum of all frequencies in all the sample sets in category j is c j

– Total number of observations: N =
∑

k rk =
∑

j c j

– If the sample sets are of the same distribution, then we expect the frequency of category j in sample set k to
be Ek j =

rkc j

N

• Define chi-square as: χ2 =
∑

k

∑

j

(Ok j−Ek j)2

Ek j

– Degrees of freedom: (r−1)(c−1)
where r is the number of sample sets and c is the number of categories

• The different sample sets are in the same distribution if χ2 < χ2
α/2 for confidence level of 1−α

Example: Grading Standard in Courses

• To see whether different courses have the same standard in grading

• For the k courses, there are j grades awarded, and the number of students enrolled in course k is rk

• Tabularize the number of students awarded to different grades in different courses:

Grade 1 Grade 2 · · · Grade j Total enrollment

Course 1 O11 O12 · · · O1 j r1 =
∑

j O1 j

Course 2 O21 O22 · · · O2 j r2 =
∑

j O2 j
...

...
...

...
...

Course k Ok1 Ok2 · · · Ok j rk =
∑

j Ok j

Total awardees c1 =
∑

k Ok1 c2 =
∑

k Ok2 · · · c j =
∑

k Ok j N =
∑

k
∑

j Ok j

• Find χ2 =
∑

k

∑

j

(Ok j−Ek j)2

Ek j
with Ek j =

rkc j

N

• If χ2 < χ2
α/2 for confidence level of 1−α and (k− 1)( j− 1) degrees of freedom, then the courses are having the

same grading standard, otherwise, there are some courses have biases.
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10 ANOVA: Analysis of Variance
• Compare whether the means of two populations are equal: Two-way t-test (i.e. testing the difference of mean)

• Compare whether the means of several populations are equal: ANOVA

• Data:

– k: Number of population

– ni: Sample size of population i

– x̄i: Sample mean of population i

– s2
i : Sample variance of population i

– µi: Population mean of population i

– σ2
i : Population variance of population i

– n =
∑

i ni: Total sample size

– x̄: Overall sample mean of the n samples

– Ti: Sum of the ni samples from population i

– ν1 = k−1: Degrees of freedom for treatments

– ν2 = n− k: Degrees of freedom for error

– n−1: Degrees of freedom for total

• Data to compute:

– Treatment sum of squares: SSTR =
k∑

i=1

ni(x̄i− x̄)2 =
( k∑

i=1

T 2
i

ni

)
− (

∑
x)2

n

– Between treatments mean square: MSTR =
SSTR
k−1

– Error sum of squares: SSE =
k∑

i=1

(ni−1)s2
i =

k∑

i=1

∑
(x− x̄i)2

– Error mean square: MSE =
SSE
n− k

– Total sum of squares: SST = SSTR+SSE =
∑

(x− x̄)2 =
∑

x2− (
∑

x)2

n

• F ratio: F =
MSTR
MSE

=
SSTR/(k−1)
SSE/(n− k)

– ν1 = k−1 is the degrees of freedom for the numerator

– ν2 = n− k is the degrees of freedom for denominator

– F-distribution: F(ν1,ν2)

∗ Mean of F-distribution: µ =
ν2

ν2−2
∗ Let Fα(ν1,ν2) to be the critical value where α is the area at right hand tail, then we have

F1−α(ν1,ν2) =
1

Fα(ν2,ν1)

• If the means of the k populations are equal, then we would have F < Fα(ν1,ν2) with confidence 1−α

11 Regression

11.1 Linear regression
• For every sample, we can obtain two properties X and Y , which we denote as (xi,yi) for sample i

• Sample size: n

• Whether X and Y are correlated? That is, if providing xi, can we obtain projected y?
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– Usually, assume X and Y satisfy the linear relation: Y = a+bX

– Then for known value X = xi, compute the projected value Y = ŷi

• Sample mean:

– Sample mean of X : x̄ =
1
n

n∑

i=1

xi

– Sample mean of Y : ȳ =
1
n

n∑

i=1

yi

• Regression formula: For Y = a+bX ,

– b =
∑n

i=1(xi− x̄)(yi− ȳ)∑n
i=1(xi− x̄)2

– a = ȳ−bx̄

– We can compute ŷi = a+bxi

11.2 Correlation coefficient

• Sum of square error of regression: SSE =
n∑

i=1

(yi− ŷi)2

which measures the difference between the experimental value and projected value of Y

• Spread of X : SSxx =
n∑

i=1

(xi− x̄i)2

• Spread of Y : SSyy =
n∑

i=1

(yi− ȳi)2

• Correlation of X and Y : SSxy =
n∑

i=1

(xi− x̄)(yi− ȳ)

• Sum of square of regression variability: SSR =
n∑

i=1

(ŷi− ȳ)2

• Then we have:

– SSyy = SSE+SSR

– Proportion of error due to error spread=
SSE
SSyy

• Squared correlation: R2 =
SSR
SSyy

= 1− SSE
SSyy

≤ 1

• Correlation coefficient: r = sign(b)
√

R2

– If R2 = 1, then regression equation and experimental data fits exactly

• Pearson coefficient, a.k.a. product moment correlation coefficient: rxy =
SSxy√

SSxx ·SSyy

– Same property as r
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