Note that \(\frac{1}{3} = \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \cdots\) In fact, we have

\[\begin{aligned} \frac{1}{3} &= \sum_{k=1}^{\infty} \frac{1}{4^k} \frac{1}{4} &= \sum_{k=1}^{\infty} \frac{1}{5^k} \frac{1}{n-1} &= \sum_{k=1}^{\infty} \frac{1}{n^k} \end{aligned}\]

This fact is useful in performing integer division. We can compute \(m\) divided by \(n\) by recursion (note the summation sign above). Consider \(m/(n-1)\), we have

\[\begin{aligned} m &= nA + B & \exists A,B\in\mathbb{N},\; 0\le B< n \textrm{therefore, }\frac{m}{n-1} &= A + \frac{A+B}{n-1}. \end{aligned}\]

Since \(A = m \textrm{ div } n\), \(B = m \textrm{ mod } n\), if \(n\) is a power of 2, we can perform the div and mod operations by bit shift.

def div(m, n):
    # n+1 is 2^k assumed here
    result = 0
    A = m
    while (True):
       A = A >> k
       B = A & n
       result = add(result, A)
       if A <= n:
           break
    if A == n: result = result + 1
    return result

def add(A, B):
    result = A XOR B
    carry = (A AND B) << 1
    return add(result, carry) if carry else result